cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187658 Binomial convolution of the (signless) central Stirling numbers of the first kind (A187646).

This page as a plain text file.
%I A187658 #15 May 31 2025 08:02:46
%S A187658 1,2,24,516,16064,655840,33157240,1999679696,140128848384,
%T A187658 11189643689088,1003005057594240,99725721676986240,
%U A187658 10892178742891589792,1296379044138734510656,166999512859041432577280,23149972436862049305233280
%N A187658 Binomial convolution of the (signless) central Stirling numbers of the first kind (A187646).
%F A187658 a(n) = Sum_{k=0..n} binomial(n,k)*s(2*k,k)*s(2*n-2*k,n-k).
%F A187658 Limit_{n->oo} (a(n)/n!)^(1/n) = -8*LambertW(-1, -exp(-1/2)/2)^2 / (1 + 2*LambertW(-1, -exp(-1/2)/2)) = 9.821629929136511797503... - _Vaclav Kotesovec_, May 30 2025
%p A187658 seq(sum(binomial(n,k)*abs(combinat[stirling1](2*k,k))*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
%t A187658 Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 15}]
%o A187658 (Maxima) makelist(sum(binomial(n,k)*abs(stirling1(2*k,k))*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);
%Y A187658 Cf. A187646, A384495, A384496.
%K A187658 nonn,easy
%O A187658 0,2
%A A187658 _Emanuele Munarini_, Mar 12 2011