A187660 Triangle read by rows: T(n,k) = (-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k), 0 <= k <= n.
1, 1, -1, 1, -1, -1, 1, -2, -1, 1, 1, -2, -3, 1, 1, 1, -3, -3, 4, 1, -1, 1, -3, -6, 4, 5, -1, -1, 1, -4, -6, 10, 5, -6, -1, 1, 1, -4, -10, 10, 15, -6, -7, 1, 1, 1, -5, -10, 20, 15, -21, -7, 8, 1, -1, 1, -5, -15, 20, 35, -21, -28, 8, 9, -1, -1, 1, -6, -15, 35, 35, -56, -28, 36, 9, -10, -1, 1
Offset: 0
Examples
Triangle begins: 1; 1, -1; 1, -1, -1; 1, -2, -1, 1; 1, -2, -3, 1, 1; 1, -3, -3, 4, 1, -1; 1, -3, -6, 4, 5, -1, -1; 1, -4, -6, 10, 5, -6, -1, 1; 1, -4, -10, 10, 15, -6, -7, 1, 1; 1, -5, -10, 20, 15, -21, -7, 8, 1, -1; 1, -5, -15, 20, 35, -21, -28, 8, 9, -1, -1; 1, -6, -15, 35, 35, -56, -28, 36, 9, -10, -1, 1;
Links
- L. E. Jeffery, Danzer matrices
- Guoce Xin and Yueming Zhong, Proving some conjectures on Kekulé numbers for certain benzenoids by using Chebyshev polynomials, arXiv:2201.02376 [math.CO], 2022.
Crossrefs
Programs
-
Maple
A187660 := proc(n,k): (-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k) end: seq(seq(A187660(n,k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011
-
Mathematica
t[n_, k_] := (-1)^Floor[3 k/2] Binomial[Floor[(n + k)/2], k]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] (* L. Edson Jeffery, Oct 20 2017 *)
Formula
Extensions
Edited and corrected by L. Edson Jeffery, Oct 20 2017
Comments