cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187661 Binomial convolution of the (signless) central Stirling numbers of the first kind and the central Stirling numbers of the second kind.

This page as a plain text file.
%I A187661 #17 May 28 2017 04:07:52
%S A187661 1,2,20,369,10192,379850,17930697,1027046517,69216504576,
%T A187661 5363945384274,469658243947850,45827641349686636,4928867833029014503,
%U A187661 579101340954599901152,73778702335232336908585,10129059530832922239925140
%N A187661 Binomial convolution of the (signless) central Stirling numbers of the first kind and the central Stirling numbers of the second kind.
%H A187661 G. C. Greubel, <a href="/A187661/b187661.txt">Table of n, a(n) for n = 0..250</a>
%F A187661 a(n) = Sum_{k=0..n} binomial(n,k) * s(2*k,k) * S(2*n-2*k,n-k).
%F A187661 a(n) ~ m * n^n * c^(2*n) * 2^(3*n-1) / (sqrt(Pi*(c-1)*n) * exp(n) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2) = 1.75643120862616967698..., and m = Sum_{j>=0} StirlingS2(2*j,j) * (2*c-1)^j / (j! * 2^(3*j) * c^(2*j)) = 1.170003674502655133465266152119563086693466... . - _Vaclav Kotesovec_, May 22 2014
%p A187661 seq(sum(binomial(n,k) * abs(combinat[stirling1](2*k, k)) * combinat[stirling2](2*(n-k), n-k), k=0..n), n=0..12);
%t A187661 Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 15}]
%o A187661 (Maxima) makelist(sum(binomial(n,k)*abs(stirling1(2*k,k))*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
%o A187661 (PARI) a(n) = sum(k=0, n, binomial(n,k)*abs(stirling(2*k, k, 1)*stirling(2*(n-k), n-k, 2))); \\ _Michel Marcus_, May 28 2017
%Y A187661 Cf. A007820, A187646.
%K A187661 nonn,easy
%O A187661 0,2
%A A187661 _Emanuele Munarini_, Mar 12 2011