cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187662 Convolution of the (signless) central Lah numbers (A187535) and the central Stirling numbers of the second kind (A007820).

This page as a plain text file.
%I A187662 #11 Oct 19 2024 08:33:32
%S A187662 1,3,45,1340,62133,3926607,313159138,30077004204,3373855596485,
%T A187662 432604296358341,62396125789568633,9997677582465775336,
%U A187662 1761777732880595653932,338625441643226149909356,70500059235176885929427760
%N A187662 Convolution of the (signless) central Lah numbers (A187535) and the central Stirling numbers of the second kind (A007820).
%F A187662 a(n) = Sum_{k=0..n} Lah(2*k,k)*S(2*n-2*k,n-k).
%F A187662 a(n) ~ 2^(4*n) * n^n / (exp(n) * sqrt(2*Pi*n)). - _Vaclav Kotesovec_, May 21 2014
%p A187662 L := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
%p A187662 seq(sum(L(k)*combinat[stirling2](2*(n-k),n-k),k=0..n),n=0..12);
%t A187662 L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
%t A187662 Table[Sum[L[k]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 14}]
%o A187662 (Maxima) L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
%o A187662 makelist(sum(L(k)*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
%Y A187662 Cf. A187535, A007820.
%K A187662 nonn,easy
%O A187662 0,2
%A A187662 _Emanuele Munarini_, Mar 12 2011