cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187664 Convolution of the (signless) central Lah numbers (A187535) and the (signless) central Stirling numbers of the first kind (A187646).

This page as a plain text file.
%I A187664 #13 May 30 2025 04:54:15
%S A187664 1,3,49,1483,67615,4173203,326208269,30880075203,3430574739759,
%T A187664 437145190334383,62803806114813801,10038354053796477099,
%U A187664 1766255133182030548351,339166069936077378326187,70571377417819411767223541
%N A187664 Convolution of the (signless) central Lah numbers (A187535) and the (signless) central Stirling numbers of the first kind (A187646).
%F A187664 a(n) = Sum_{k=0..n} Lah(2*k,k)*s(2*n-2*k,n-k).
%F A187664 a(n) ~ 2^(4*n - 1/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n)). - _Vaclav Kotesovec_, May 30 2025
%p A187664 L := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
%p A187664 seq(sum(L(k)*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
%t A187664 L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
%t A187664 Table[Sum[L[k]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 14}]
%o A187664 (Maxima) L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
%o A187664 makelist(sum(L(k)*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);
%Y A187664 Cf. A187535, A187646.
%K A187664 nonn,easy
%O A187664 0,2
%A A187664 _Emanuele Munarini_, Mar 12 2011