This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187664 #13 May 30 2025 04:54:15 %S A187664 1,3,49,1483,67615,4173203,326208269,30880075203,3430574739759, %T A187664 437145190334383,62803806114813801,10038354053796477099, %U A187664 1766255133182030548351,339166069936077378326187,70571377417819411767223541 %N A187664 Convolution of the (signless) central Lah numbers (A187535) and the (signless) central Stirling numbers of the first kind (A187646). %F A187664 a(n) = Sum_{k=0..n} Lah(2*k,k)*s(2*n-2*k,n-k). %F A187664 a(n) ~ 2^(4*n - 1/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n)). - _Vaclav Kotesovec_, May 30 2025 %p A187664 L := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi; %p A187664 seq(sum(L(k)*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12); %t A187664 L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!] %t A187664 Table[Sum[L[k]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 14}] %o A187664 (Maxima) L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!; %o A187664 makelist(sum(L(k)*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12); %Y A187664 Cf. A187535, A187646. %K A187664 nonn,easy %O A187664 0,2 %A A187664 _Emanuele Munarini_, Mar 12 2011