cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187665 Binomial convolution of the central Lah numbers and the central Stirling numbers of the second kind.

This page as a plain text file.
%I A187665 #11 May 30 2025 05:28:25
%S A187665 1,3,47,1440,67533,4280175,341307292,32750424588,3670267277749,
%T A187665 470237282353989,67781221867781615,10855095004543985756,
%U A187665 1912103925425230231884,367398970712627913234708,76469792506315229551855080
%N A187665 Binomial convolution of the central Lah numbers and the central Stirling numbers of the second kind.
%F A187665 a(n) = Sum_{k=0..n} binomial(n,k)*A187535(k)* A048993(2n-2k,n-k).
%F A187665 a(n) ~ c * 16^n * (n-1)!, where c = (1/Pi) * Sum_{k>=0} abs(Stirling2(2*k,k)) / (k! * 2^(4*k+1)) = 0.172113078600558193773... - _Vaclav Kotesovec_, Jul 05 2021, updated May 30 2025
%p A187665 A048993 := proc(n,k) combinat[stirling2](n, k) ; end proc:
%p A187665 A187535 := proc(n) if n=0 then 1 else binomial(2*n-1, n-1)*(2*n)!/n! end if; end proc:
%p A187665 A187665 := proc(n) add(binomial(n,k)*A187535(k)*A048993(2*n-2*k,n-k), k=0..n) ; end proc:
%p A187665 seq(A187665(n),n=0..10)  ; # _R. J. Mathar_, Mar 28 2011
%t A187665 L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
%t A187665 Table[Sum[Binomial[n,k]L[k]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 14}]
%o A187665 (Maxima) L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
%o A187665 makelist(sum(binomial(n,k)*L(k)*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
%K A187665 nonn,easy
%O A187665 0,2
%A A187665 _Emanuele Munarini_, Mar 12 2011