cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187666 Binomial convolution of the (signless) central Lah numbers (A187535) and the (signless) central Stirling numbers of the first kind (A187646).

This page as a plain text file.
%I A187666 #10 May 30 2025 05:24:09
%S A187666 1,3,51,1599,74545,4654255,365549495,34642467783,3846064986001,
%T A187666 489429448820811,70208261310969435,11205444535728231855,
%U A187666 1969021774778391995761,377672618542009829524551,78507169034687468202172591
%N A187666 Binomial convolution of the (signless) central Lah numbers (A187535) and the (signless) central Stirling numbers of the first kind (A187646).
%F A187666 a(n) = Sum_{k=0..n} binomial(n,k) * Lah(2k,k) * Stirling1(2n-2k,n-k).
%F A187666 a(n) ~ c * 2^(4*n + 1/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n)), where c = Sum_{k>=0} abs(Stirling1(2*k,k)) / (k! * 2^(4*k+1)) = 0.550990257867992515027936630097897... - _Vaclav Kotesovec_, May 30 2025
%p A187666 L := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
%p A187666 seq(sum(binomial(n,k)*L(k)*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
%t A187666 L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
%t A187666 Table[Sum[Binomial[n,k]L[k]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 14}]
%o A187666 (Maxima) L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
%o A187666 makelist(sum(binomial(n,k)*L(k)*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);
%Y A187666 Cf. A187535, A187646.
%K A187666 nonn,easy
%O A187666 0,2
%A A187666 _Emanuele Munarini_, Mar 12 2011