A187681 Rank transform of the sequence floor(n/3); complement of A187682.
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 56, 57, 58, 60, 61, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 99, 100, 102, 103, 104, 106, 107, 108, 110, 111, 112, 113, 114, 115, 117, 118, 119, 121, 122
Offset: 1
Keywords
Programs
-
Mathematica
seqA = Table[Floor[n/3], {n, 1, 220}] seqB = Table[n, {n, 1, 220}];(*A000027*) jointRank[{seqA_, seqB_}] := {Flatten@Position[#1, {_, 1}], Flatten@Position[#1, {_, 2}]} &[ Sort@Flatten[{{#1, 1} & /@ seqA, {#1, 2} & /@ seqB}, 1]]; limseqU = FixedPoint[jointRank[{seqA, #1[[1]]}] &, jointRank[{seqA, seqB}]][[1]] (*A187681*) Complement[Range[Length[seqA]], limseqU] (*A187682*) (*by Peter J. C. Moses, Mar 12 2011*)
Comments