A187712 Composite numbers k such that k = (product of divisors of k) mod (sum of divisors of k).
10, 20, 33, 40, 76, 136, 145, 207, 261, 385, 464, 528, 588, 897, 931, 1441, 1519, 1611, 1816, 1989, 2016, 2205, 2241, 2353, 3280, 3504, 3724, 3808, 4067, 4320, 4864, 5696, 6256, 7201, 7345, 8036, 10688, 10936, 11376, 13000, 16840, 17101, 18625, 19359, 19504, 19840
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range[20000], CompositeQ[#] && PowerMod[#, DivisorSigma[0, #]/2, DivisorSigma[1, #]] == # &] (* Amiram Eldar, Mar 22 2024 *)
-
PARI
is1(n) = my(f = factor(n), s = sigma(f), d = numdiv(f)); if(d%2, Mod(sqrtint(n), s)^d, Mod(n, s)^(d/2)) == n; is(n) = n > 1 && !isprime(n) && is1(n); \\ Amiram Eldar, Mar 22 2024
Extensions
More terms from Amiram Eldar, Mar 22 2024