This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187741 #35 Mar 24 2023 16:59:54 %S A187741 1,1,1,2,3,6,12,24,60,120,360,720,2520,5040,20160,40320,181440,362880, %T A187741 1814400,3628800,19958400,39916800,239500800,479001600,3113510400, %U A187741 6227020800,43589145600,87178291200,653837184000,1307674368000,10461394944000,20922789888000 %N A187741 G.f.: Sum_{n>=0} (1 + n*x)^n * x^n / (1 + x + n*x^2)^n. %C A187741 This is an enumeration of the disjoint union (with repetition) of A001710(n), for n > 0, and A000142(n), for n > 0. The first lists the orders of the alternating groups; the second lists the orders of the symmetric groups. - _Hal M. Switkay_, Mar 13 2023 %F A187741 G.f.: 1/2 + (1+2*x) * Sum_{n>=0} (n+1)!*x^(2*n)/2. %F A187741 a(2*n) = (n+1)!/2, a(2*n-1) = n!, for n>0 with a(0)=1. %F A187741 From _Amiram Eldar_, Dec 11 2022: (Start) %F A187741 Sum_{n>=0} 1/a(n) = 3*e - 4. %F A187741 Sum_{n>=0} (-1)^n/a(n) = e - 2. (End) %e A187741 G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 12*x^6 + 24*x^7 + 60*x^8 +... %e A187741 where %e A187741 A(x) = 1 + (1+x)*x/(1+x+x^2) + (1+2*x)^2*x^2/(1+x+2*x^2)^2 + (1+3*x)^3*x^3/(1+x+3*x^2)^3 + (1+4*x)^4*x^4/(1+x+4*x^2)^4 + (1+5*x)^5*x^5/(1+x+5*x^2)^5 +... %t A187741 a[n_] := If[OddQ[n], ((n + 1)/2)!, (n/2 + 1)!/2]; a[0] = 1; Array[a, 32, 0] (* _Amiram Eldar_, Dec 11 2022 *) %o A187741 (PARI) {a(n)=polcoeff( sum(m=0, n, (x+m*x^2)^m / (1 + x+m*x^2 +x*O(x^n))^m), n)} %o A187741 for(n=0, 40, print1(a(n), ", ")) %o A187741 (PARI) {a(n)=if(n==0,1, if(n%2==0, ((n+2)/2)!/2, ((n+1)/2)! ))} %o A187741 for(n=0, 30, print1(a(n), ", ")) %Y A187741 Cf. A000142, A001710, A187742, A187735, A208236, A204064, A361382. %K A187741 nonn %O A187741 0,4 %A A187741 _Paul D. Hanna_, Jan 03 2013