This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187756 #36 Oct 21 2022 21:11:01 %S A187756 0,1,20,105,336,825,1716,3185,5440,8721,13300,19481,27600,38025,51156, %T A187756 67425,87296,111265,139860,173641,213200,259161,312180,372945,442176, %U A187756 520625,609076,708345,819280,942761,1079700,1231041,1397760,1580865,1781396,2000425 %N A187756 a(n) = n^2 * (4*n^2 - 1) / 3. %H A187756 G. C. Greubel, <a href="/A187756/b187756.txt">Table of n, a(n) for n = 0..5000</a> %H A187756 P. Aluffi, <a href="https://arxiv.org/abs/1408.1702">Degrees of projections of rank loci</a>, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."] %H A187756 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5, -10, 10, -5, 1). %F A187756 G.f.: x * (1 + x) * (1 + 14*x + x^2) / (1 - x)^5. %F A187756 a(n) = a(-n) for all n in Z. %F A187756 a(n) = n * A000447(n). %F A187756 G.f. A144853(x) = 1 / (1 - a(1)*x / (1 - a(2)*x / (1 - a(3)*x / ... ))). %e A187756 G.f. = x + 20*x^2 + 105*x^3 + 336*x^4 + 825*x^5 + 1716*x^6 + 3185*x^7 + ... %t A187756 LinearRecurrence[{5,-10,10,-5,1},{0,1,20,105,336},40] (* _Harvey P. Dale_, Mar 26 2016 *) %t A187756 a[ n_] := SeriesCoefficient[ x * (1 + x) * (1 + 14*x + x^2) / (1 - x)^5, {x, 0, Abs[n]}]; (* _Michael Somos_, Dec 26 2016 *) %o A187756 (PARI) {a(n) = polcoeff( x * (1 + x) * (1 + 14*x + x^2) / (1 - x)^5 + x * O(x^n), abs(n))}; %o A187756 (Maxima) A187756(n):=n^2*(4*n^2-1)/3$ makelist(A187756(n),n,0,20); /* _Martin Ettl_, Jan 07 2013 */ %o A187756 (Magma) [n^2*(4*n^2-1)/3: n in [0..50]]; // _G. C. Greubel_, Aug 10 2018 %Y A187756 Cf. A000447, A144853. %K A187756 nonn,easy %O A187756 0,3 %A A187756 _Michael Somos_, Jan 03 2013