A187760 Table T(n,k) read by antidiagonals. T(n,k)=n-k+1, if n>=k, T(n,k)=k-n+2, if n < k.
1, 3, 2, 4, 1, 3, 5, 3, 2, 4, 6, 4, 1, 3, 5, 7, 5, 3, 2, 4, 6, 8, 6, 4, 1, 3, 5, 7, 9, 7, 5, 3, 2, 4, 6, 8, 10, 8, 6, 4, 1, 3, 5, 7, 9, 11, 9, 7, 5, 3, 2, 4, 6, 8, 10, 12, 10, 8, 6, 4, 1, 3, 5, 7, 9, 11
Offset: 1
Examples
The start of the sequence as table for the general case: 1....m..m+1..m+2..m+3..m+4..m+5... 2....1....m..m+1..m+2..m+3..m+4... 3....2....1....m..m+1..m+2..m+3... 4....3....2....1....m..m+1..m+2... 5....4....3....2....1....m..m+1... 6....5....4....3....2....1....m... 7....6....5....4....3....2....1... . . . The start of the sequence as triangle array read by rows for the general case: 1; m,2; m+1,1,3; m+2,m,2,4; m+3,m+1,1,3,5; m+4,m+2,m,2,4,6; m+5,m+3,m+1,1,3,5,7; . . . Row number r contains r numbers: m+r-2, m+r-4,...r-2,r.
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Programs
-
Mathematica
T[n_, k_] := If[1 <= k <= n, n - k + 1, k - n + 2]; Table[T[n - k + 1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 06 2018 *)
-
Python
t=int((math.sqrt(8*n-7)-1)/2) result=abs((t+1)**2 - 2*n) + 3*int((t**2+3*t+2-2*n)/(t+1))
Formula
For the general case, a(n) = |(t+1)^2 - 2n| + m*floor((t^2+3t+2-2n)/(t+1)), where t=floor((-1+sqrt(8*n-7))/2).
For m=3, a(n) = |(t+1)^2 - 2n| + 3*floor((t^2+3t+2-2n)/(t+1)), where t=floor((-1+sqrt(8*n-7))/2).
Comments