This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187763 #12 Jul 13 2013 12:03:48 %S A187763 1,2,3,3,6,7,4,4,7,7,7,7,10,9,5,5,13,16,8,5,5,9,7,7,11,9,9,16,9,17,5, %T A187763 5,14,9,9,19,16,22,9,9,5,5,16,14,9,17,7,7,16,20,12,9,12,106,9,20,16, %U A187763 20,9,17,20,95,5,5,16,23,14,12,9,15,9,9,9,5,5,20 %N A187763 Number of common terms in consecutive Collatz trajectories. %C A187763 Size of intersection of row n and row n+1 in A070165. %H A187763 Reinhard Zumkeller, <a href="/A187763/b187763.txt">Table of n, a(n) for n = 1..10000</a> %H A187763 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a> %e A187763 . | Rows in A070165 (trajectories) %e A187763 a(1) = #{1} = 1; | 1 %e A187763 a(2) = #{2,1} = 2; | 2,1 %e A187763 a(3) = #{4,2,1} = 3; | 3,10,5,16,8,4,2,1 %e A187763 a(4) = #{4,2,1} = 3; | 4,2,1 %e A187763 a(5) = #{5,16,8,4,2,1} = 6; | 5,16,8,4,2,1 %e A187763 a(6) = #{10,5,16,8,4,2,1} = 7; | 6,3,10,5,16,8,4,2,1 %e A187763 a(7) = #{8,4,2,1} = 4; | 7,22,11,34,17,52,26,13,40,20,10,5,.. %e A187763 a(8) = #{8,4,2,1} = 4; | 8,4,2,1 %e A187763 a(9) = #{10,5,16,8,4,2,1} = 7; | 9,28,14,7,22,11,34,17,52,26,13,40,.. %e A187763 a(10) = #{10,5,16,8,4,2,1} = 7; | 10,5,16,8,4,2,1 %e A187763 a(11) = #{10,5,16,8,4,2,1} = 7; | 11,34,17,52,26,13,40,20,10,5,16,8,4,.. %e A187763 a(12) = #{10,5,16,8,4,2,1} = 7. | 12,6,3,10,5,16,8,4,2,1 %e A187763 . | 13,40,20,10,5,16,8,4,2,1 . %t A187763 coll[n_]:=NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]; Table[Length[Intersection[coll[n],coll[n+1]]],{n,76}] (* _Jayanta Basu_, May 28 2013 *) %o A187763 (Haskell) %o A187763 import Data.List (intersect) %o A187763 a187763 n = a187763_list !! (n-1) %o A187763 a187763_list = map length $ %o A187763 zipWith intersect a070165_tabf $ tail a070165_tabf %K A187763 nonn %O A187763 1,2 %A A187763 _Reinhard Zumkeller_, Jan 04 2013