cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187770 Decimal expansion of Otter's asymptotic constant beta for the number of rooted trees.

This page as a plain text file.
%I A187770 #40 Feb 17 2025 12:56:49
%S A187770 4,3,9,9,2,4,0,1,2,5,7,1,0,2,5,3,0,4,0,4,0,9,0,3,3,9,1,4,3,4,5,4,4,7,
%T A187770 6,4,7,9,8,0,8,5,4,0,7,9,4,0,1,1,9,8,5,7,6,5,3,4,9,3,5,4,5,0,2,2,6,3,
%U A187770 5,4,0,0,4,2,0,4,7,6,4,6,0,5,3,7,9,8,6
%N A187770 Decimal expansion of Otter's asymptotic constant beta for the number of rooted trees.
%C A187770 A000081(n) ~ 0.439924012571 * alpha^n * n^(-3/2), alpha = 2.95576528565199497... (see A051491)
%D A187770 Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p.296
%D A187770 D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, p. 396.
%H A187770 Vaclav Kotesovec, <a href="/A187770/b187770.txt">Table of n, a(n) for n = 0..1799</a>, (this constant was computed by David Broadhurst in November 1999)
%H A187770 David Broadhurst, <a href="https://vimeo.com/1054325156?share=copy">Resurgent Integer Sequences</a>, Rutgers Experimental Math Seminar, Feb 06 2025; <a href="https://sites.math.rutgers.edu/~zeilberg/expmath/broadhurst2025.pdf">Slides</a>.
%H A187770 Amirmohammad Farzaneh, Mihai-Alin Badiu, and Justin P. Coon, <a href="https://arxiv.org/abs/2309.09779">On Random Tree Structures, Their Entropy, and Compression</a>, arXiv:2309.09779 [cs.IT], 2023.
%H A187770 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RootedTree.html">Rooted Tree</a>
%e A187770 0.43992401257102530404090339143454476479808540794...
%t A187770 digits = 87; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^(-k)]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; b = Sqrt[(1 + Sum[APrime[alpha^-k]/alpha^k, {k, 2, max}])/(2*Pi)]; RealDigits[b, 10, digits] // First (* _Jean-François Alcover_, Sep 24 2014 *)
%Y A187770 Cf. A000081, A051491, A000055, A086308.
%K A187770 nonn,cons
%O A187770 0,1
%A A187770 _Vaclav Kotesovec_, Jan 04 2013