cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187771 Numbers whose sum of divisors is the cube of the sum of its prime divisors.

This page as a plain text file.
%I A187771 #41 Sep 09 2021 12:25:13
%S A187771 245180,612408,639198,1698862,1721182,5154168,7824284,15817596,
%T A187771 20441848,25969788,27688078,28404862,35860609,67149432,77378782,
%U A187771 91397838,96462862,179302264,191550135,289772221,306901244,311657084,392802179,441839706,572673855,652117774,988918364
%N A187771 Numbers whose sum of divisors is the cube of the sum of its prime divisors.
%C A187771 This sequence and A187824 and A187761 are winners in the contest held at the 2013 AMS/MAA Joint Mathematics Meetings. - _T. D. Noe_, Jan 14 2013
%C A187771 The identity sigma(k) = (sopf(k))^m only occurs for m = 3 (this sequence) in the given range, however it is likely that it also occurs for other powers m in higher numbers.
%C A187771 The smallest k such that sigma(k) = sopf(k)^m, for m=4,5,6 are 1056331752 (A221262), 213556659624 (A221263) and 45770980141656, respectively. - _Giovanni Resta_, Jan 07 2013
%C A187771 Prime divisors are taken without multiplicity. - _Harvey P. Dale_, Dec 17 2016
%D A187771 T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
%H A187771 Donovan Johnson and Robert Gerbicz, <a href="/A187771/b187771.txt">Table of n, a(n) for n = 1..1105</a> (first 100 terms from _Donovan Johnson_)
%H A187771 W. Sierpinski, <a href="http://matwbn.icm.edu.pl/ksiazki/mon/mon42/mon4204.pdf">Number Of Divisors And Their Sum</a>, Elementary theory of numbers, Warszawa, 1964.
%F A187771 a(n) = k if sigma(k) = (sopf(k))^3, where sigma(k) = A000203(k) and sopf(k) = A008472(k).
%e A187771 a(13) = 35860609 = 41 * 71 * 97 * 127, then sigma(35860609) = 37933056 = (41 + 71 + 97 + 127)^3.
%t A187771 d[n_]:= If[Plus@@Divisors[n]-Power[Plus@@Select[Divisors[n], PrimeQ], 3]==0, n]; Select[Range[2,10^9], #==d[#]&]
%t A187771 Select[Range[2, 10^9],DivisorSigma[1,#]==Total[FactorInteger[#][[All, 1]]]^3&] (* _Harvey P. Dale_, Dec 17 2016 *)
%o A187771 (PARI) is(n)=my(f=factor(n));sum(i=1,#f~,f[i,1])^3==sigma(n) \\ _Charles R Greathouse IV_, Jun 29 2013
%Y A187771 Cf. A000203, A008472, A020477, A070222.
%Y A187771 Cf. A221262 (sigma(k)=sopf(k)^4), A221263 (sigma(k)=sopf(k)^5).
%K A187771 nonn,nice
%O A187771 1,1
%A A187771 _Manuel Valdivia_, Jan 04 2013