cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A208244 Number of ways to write n as the sum of a practical number (A005153) and a triangular number (A000217).

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 3, 2, 2, 1, 2, 3, 1, 2, 1, 3, 2, 3, 3, 1, 3, 3, 3, 2, 2, 2, 3, 2, 3, 4, 3, 2, 4, 3, 2, 3, 3, 3, 3, 4, 2, 4, 3, 2, 3, 4, 2, 4, 3, 1, 4, 3, 2, 3, 2, 4, 6, 2, 2, 4, 4, 1, 5, 4, 2, 4, 4, 3, 4, 4, 2, 4, 3, 2, 5, 3, 2, 4, 4, 2, 5, 4, 2, 6, 4, 3, 5, 3, 1, 6, 3, 3, 5, 5, 3, 5, 3, 3, 5, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 11 2013

Keywords

Comments

Conjecture: a(n)>0 for all n>0.
The author has verified this for n up to 10^8, and also guessed the following refinement: If n>6 is not among 20, 104, 272, 464, 1664, then n can be written as p+q with p an even practical number and q a positive triangular number.
Somu and Tran (2024) proved the conjecture that a(n)>0 for n>0. - Duc Van Khanh Tran, Apr 24 2024

Examples

			a(15)=1 since 15=12+3 with 12 a practical number and 3 a triangular number.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n]
    Pow[n_,i_]:=Pow[n,i]=Part[Part[f[n],i],1]^(Part[Part[f[n],i],2])
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n],s+1],1]<=DivisorSigma[1,Product[Pow[n,i],{i,1,s}]]+1,0,1],{s,1,Length[f[n]]-1}]
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n,2]+Con[n]==0)
    a[n_]:=a[n]=Sum[If[pr[n-k(k+1)/2]==True,1,0],{k,0,(Sqrt[8n+1]-1)/2}]
    Do[Print[n," ",a[n]],{n,1,100}]
Showing 1-1 of 1 results.