cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187786 Table read by rows, where n-th row contains all numbers having in binary representation as many zeros and ones as n.

This page as a plain text file.
%I A187786 #12 Jan 29 2014 04:03:43
%S A187786 0,1,2,3,4,5,6,5,6,7,8,9,10,12,9,10,12,11,13,14,9,10,12,11,13,14,11,
%T A187786 13,14,15,16,17,18,20,24,17,18,20,24,19,21,22,25,26,28,17,18,20,24,19,
%U A187786 21,22,25,26,28,19,21,22,25,26,28,23,27,29,30,17,18,20
%N A187786 Table read by rows, where n-th row contains all numbers having in binary representation as many zeros and ones as n.
%C A187786 For k = 0..A090706(n)-1: A023416(T(n,k))=A023416(n); A000120(T(n,k))=A000120(n); A053644(n)<=T(n,k)<=A003817(n);
%C A187786 T(n,k) = n for some k;
%C A187786 A187769 contains all rows without repetitions.
%H A187786 Reinhard Zumkeller, <a href="/A187786/b187786.txt">Rows n = 0..255 of triangle, flattened</a>
%H A187786 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%e A187786 .  n  n-th row              binary                          row length
%e A187786 . --  --------------------- ------------------------------- ----------
%e A187786 .  0  {0}                   {0}                                      1
%e A187786 .  1  {1}                   {1}                                      1
%e A187786 .  2  {2}                   {10}                                     1
%e A187786 .  3  {3}                   {11}                                     1
%e A187786 .  4  {4}                   {100}                                    1
%e A187786 .  5  {5,6}                 {101,110}                                2
%e A187786 .  6  {5,6}                 {101,110}                                2
%e A187786 .  7  {7}                   {111}                                    1
%e A187786 .  8  {8}                   {1000}                                   1
%e A187786 .  9  {9,10,12}             {1001,1010,1100}                         3
%e A187786 . 10  {9,10,12}             {1001,1010,1100}                         3
%e A187786 . 11  {11,13,14}            {1011,1101,1110}                         3
%e A187786 . 12  {9,10,12}             {1001,1010,1100}                         3
%e A187786 . 13  {11,13,14}            {1011,1101,1110}                         3
%e A187786 . 14  {11,13,14}            {1011,1101,1110}                         3
%e A187786 . 15  {15}                  {1111}                                   1
%e A187786 . 16  {16}                  {10000}                                  1
%e A187786 . 17  {17,18,20,24}         {10001,10010,10100,11000}                4
%e A187786 . 18  {17,18,20,24}         {10001,10010,10100,11000}                4
%e A187786 . 19  {19,21,22,25,26,28}   {10011,10101,10110,11001,11010,11100}    6
%e A187786 . 20  {17,18,20,24}         {10001,10010,10100,11000}                4 .
%o A187786 (Haskell)
%o A187786 import List (find)
%o A187786 import Maybe (fromJust)
%o A187786 a187786 n k = a187786_tabf !! n !! k
%o A187786 a187786_row n = fromJust $ find (elem n) a187769_tabf
%o A187786 a187786_tabf = map a187786_row [0..]
%K A187786 nonn,base,tabf,look
%O A187786 0,3
%A A187786 _Reinhard Zumkeller_, Jan 06 2013