This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187797 #26 Feb 01 2021 18:29:49 %S A187797 10,16,18,22,24,30,34,36,42,46,48,54,60,64,66,72,76,78,84,90,102,106, %T A187797 108,112,114,120,126,132,138,142,144,150,154,156,162,168,174,180,184, %U A187797 186,192,196,198,202,204,210,216,222,228,232,234,240,244,246,252,258,264,270,274,276,282,286 %N A187797 Numbers having at least two different ordered partitions p+q and (p+2)+(q-2) where p, q, p+2 and q-2 are all prime. %C A187797 Numbers k with at least one pair of externally tangent circles with radius sqrt(2) and center (p,q) where p and q are prime, p + q = k and p <= q. - _Wesley Ivan Hurt_, Aug 11 2020 %e A187797 For n=10, the partition solutions are 3+7 and 5+5, giving p=3, q=7, p+2=5, q-2=5. %p A187797 isA187797 := proc(n) %p A187797 local i,p,q ; %p A187797 for i from 1 do %p A187797 p := ithprime(i) ; %p A187797 q := n-p ; %p A187797 if q <= p+2 then %p A187797 return false; %p A187797 end if; %p A187797 if isprime(q) then %p A187797 if isprime(p+2) and isprime(q-2) then %p A187797 return true; %p A187797 end if; %p A187797 end if; %p A187797 end do: %p A187797 return false; %p A187797 end proc: %p A187797 for n from 4 to 600 do %p A187797 if isA187797(n) then %p A187797 printf("%d,",n); %p A187797 end if; %p A187797 end do: # _R. J. Mathar_, Oct 03 2013 %t A187797 Table[If[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[2 n - i] - PrimePi[2 n - i - 1]) (PrimePi[i + 2] - PrimePi[i + 1]) (PrimePi[2 n - i - 2] - PrimePi[2 n - i - 3]), {i, n - 2}] > 0, 2 n, {}], {n, 100}] // Flatten (* _Wesley Ivan Hurt_, Apr 13 2020 *) %K A187797 nonn %O A187797 1,1 %A A187797 _Bob Gilson_, Aug 30 2013