This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187800 #26 Nov 01 2021 03:20:21 %S A187800 1,1,1,1,1,1,1,1,2,1,1,4,1,8,0,0,0,0,0,0,1,1,1,1,3,1,1,1,6,4,1,12,16, %T A187800 0,0,0,0,0,2,1,1,9,16,8,1,1,18,64,64,16,0,0,0,4,1,27,193,544,707,454, %U A187800 142,20,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 %N A187800 Number T(n,k,r,u) of dissections of an n X k X r rectangular cuboid on a unit cubic grid into integer-sided cubes containing u nodes that are unconnected to any of their neighbors; irregular triangle T(n,k,r,u), n >= k >= r >= 1, u >= 0 read by rows. %C A187800 Row lengths are specified in A228726. %H A187800 Christopher Hunt Gribble, <a href="/A187800/b187800.txt">Rows 1..34 flattened</a> %H A187800 Christopher Hunt Gribble, <a href="/A187800/a187800.cpp.txt">C++ program</a> %e A187800 T(4,3,2,2) = 4 because the 4 X 3 X 2 rectangular cuboid can be dissected in 4 distinct ways in which there are 2 nodes unconnected to any of their neighbors. The dissections and isolated nodes can be illustrated by expanding into 2 dimensions: %e A187800 ._______. ._______. ._______. %e A187800 | | | | . | . | | | | %e A187800 |___|___| |___|___| |___|___| %e A187800 |_|_|_|_| |_|_|_|_| |_|_|_|_| %e A187800 ._______. ._______. ._______. %e A187800 | |_|_| | . |_|_| | |_|_| %e A187800 |___| | |___| . | |___| | %e A187800 |_|_|___| |_|_|___| |_|_|___| %e A187800 ._______. ._______. ._______. %e A187800 |_|_| | |_|_| . | |_|_| | %e A187800 | |___| | . |___| | |___| %e A187800 |___|_|_| |___|_|_| |___|_|_| %e A187800 ._______. ._______. ._______. %e A187800 |_|_|_|_| |_|_|_|_| |_|_|_|_| %e A187800 | | | | . | . | | | | %e A187800 |___|___| |___|___| |___|___| %e A187800 . %e A187800 The irregular triangle begins: %e A187800 u 0 1 2 3 4 5 6 7 8 9 10 11 12 ... %e A187800 n k r %e A187800 1,1,1 1 %e A187800 2,1,1 1 %e A187800 2,2,1 1 %e A187800 2,2,2 1 1 %e A187800 3,1,1 1 %e A187800 3,2,1 1 %e A187800 3,2,2 1 2 %e A187800 3,3,1 1 %e A187800 3,3,2 1 4 %e A187800 3,3,3 1 8 0 0 0 0 0 0 1 %e A187800 4,1,1 1 %e A187800 4,2,1 1 %e A187800 4,2,2 1 3 1 %e A187800 4,3,1 1 %e A187800 4,3,2 1 6 4 %e A187800 4,3,3 1 12 16 0 0 0 0 0 2 %e A187800 4,4,1 1 %e A187800 4,4,2 1 9 16 8 1 %e A187800 4,4,3 1 18 64 64 16 0 0 0 4 %e A187800 4,4,4 1 27 193 544 707 454 142 20 9 0 0 0 0 ... %Y A187800 Row sums = A228267(n,k,r). %Y A187800 Cf. A225777. %K A187800 nonn,tabf %O A187800 1,9 %A A187800 _Christopher Hunt Gribble_, Aug 30 2013