cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187808 a(n) = |{0<=k

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 1, 3, 2, 3, 1, 4, 1, 4, 1, 3, 2, 5, 4, 4, 2, 4, 1, 4, 2, 5, 1, 4, 2, 4, 2, 6, 2, 5, 4, 4, 2, 5, 1, 7, 1, 7, 5, 3, 2, 4, 2, 4, 3, 6, 3, 6, 4, 7, 4, 8, 2, 9, 2, 8, 3, 2, 3, 7, 4, 7, 1, 7, 4, 7, 1, 7, 4, 9, 7, 8, 2, 9, 3, 6, 2, 6, 3, 7, 2, 8, 3, 7, 4, 6, 8, 9, 4, 6, 3, 9, 5, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 07 2013

Keywords

Comments

Conjecture: a(n)>0 for all n>1. Moreover, if n>5 is different from 9, 191, 329, 641, 711, 979, then 2k-3, 2k+3, n(n-k)-1, n(n+k)-1 are all prime for some 0
Zhi-Wei Sun also made the following conjectures:
(1) For any integer n>101 there is an integer 0
(2) For each n=128,129,... there is an integer 0

Examples

			a(25) = 1 since 2*17+3 = 37, 25(25-17)-1 = 199, and 25(25+17)-1 = 1049 are all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Sum[If[PrimeQ[2k+3]==True&&PrimeQ[n(n-k)-1]==True&&PrimeQ[n(n+k)-1]==True,1,0],{k,0,n-1}]
    Do[Print[n," ",a[n]],{n,1,100}]