This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187816 #23 Mar 13 2015 22:54:08 %S A187816 1,2,1,4,2,1,1,8,4,2,2,1,1,1,1,16,8,4,4,2,2,2,2,1,1,1,1,1,1,1,1,32,16, %T A187816 8,8,4,4,4,4,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,64,32,16, %U A187816 16,8,8,8,8,4,4,4,4,4,4,4,4,2,2,2,2,2 %N A187816 Triangle read by rows in which row n lists the first 2^(n-1) terms of A006519 in nonincreasing order, n >= 1. %C A187816 T(n,k) is also the number of parts in the k-th largest region of the diagram of regions of the set of compositions of n, n >= 1, k >= 1, see example. %C A187816 Row lengths is A000079. %C A187816 Row sums give A001792(n-1). %e A187816 For n = 5 the diagram of regions of the set of compositions of 5 has 2^(5-1) regions, see below: %e A187816 ------------------------------------------------------ %e A187816 . A006519 %e A187816 . as a tree %e A187816 . of number Diagram %e A187816 Region of parts of regions Composition %e A187816 ------------------------------------------------------ %e A187816 . _ _ _ _ _ %e A187816 1 | 1 | |_| | | | | 1, 1, 1, 1, 1 %e A187816 2 | 2 | |_ _| | | | 2, 1, 1, 1 %e A187816 3 | 1 | |_| | | | 1, 2, 1, 1 %e A187816 4 | 4 | |_ _ _| | | 3, 1, 1 %e A187816 5 | 1 | |_| | | | 1, 1, 2, 1 %e A187816 6 | 2 | |_ _| | | 2, 2, 1 %e A187816 7 | 1 | |_| | | 1, 3, 1 %e A187816 8 | 8 | |_ _ _ _| | 4, 1 %e A187816 9 | 1 | |_| | | | 1, 1, 1, 2 %e A187816 10 | 2 | |_ _| | | 2, 1, 2 %e A187816 11 | 1 | |_| | | 1, 2, 2 %e A187816 12 | 4 | |_ _ _| | 3, 2 %e A187816 13 | 1 | |_| | | 1, 1, 3 %e A187816 14 | 2 | |_ _| | 2, 3 %e A187816 15 | 1 | |_| | 1, 4 %e A187816 16 | 16 | |_ _ _ _ _| 5 %e A187816 . %e A187816 The first largest region in the diagram is the 16th region which contains 16 parts, so T(5,1) = 16. The second largest region is the 8th region which contains 8 parts, so T(5,2) = 8. The third and the fourth largest regions are both the 4th region and the 12th region, each contains 4 parts, so T(5,3) = 4 and T(5,4) = 4. And so on. The sequence of the number of parts of the k-th largest region of the diagram is [16, 8, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1], the same as the 5th row of triangle, as shown below. %e A187816 Triangle begins: %e A187816 1; %e A187816 2,1; %e A187816 4,2,1,1; %e A187816 8,4,2,2,1,1,1,1; %e A187816 16,8,4,4,2,2,2,2,1,1,1,1,1,1,1,1; %e A187816 32,16,8,8,4,4,4,4,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1; %e A187816 ... %Y A187816 Cf. A000079, A001511, A001792, A006519, A011782, A065120, A187818, A228525, A228369. %K A187816 nonn,tabf,easy %O A187816 1,2 %A A187816 _Omar E. Pol_, Sep 10 2013