This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187818 #23 Mar 13 2015 22:54:38 %S A187818 1,3,1,7,3,1,1,15,7,3,3,1,1,1,1,31,15,7,7,3,3,3,3,1,1,1,1,1,1,1,1,63, %T A187818 31,15,15,7,7,7,7,3,3,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,127, %U A187818 63,31,31,15,15,15,15,7,7,7,7,7,7,7,7,3,3 %N A187818 Triangle read by rows in which row n lists the first 2^(n-1) terms of A038712 in nonincreasing order, n >= 1. %C A187818 T(n,k) is also the sum of all parts of the k-th largest region of the diagram of regions of the set of compositions of n, n >= 1, k >= 1, see example. %C A187818 Row lengths is A000079. %C A187818 Row sums give A001787, n >= 1. %e A187818 For n = 5 the diagram of regions of the set of compositions of 5 has 2^(5-1) regions, see below: %e A187818 ------------------------------------------------------ %e A187818 . A038712 as %e A187818 . a tree of sum Diagram %e A187818 Region of all parts of regions Composition %e A187818 ------------------------------------------------------ %e A187818 . _ _ _ _ _ %e A187818 1 | 1 | |_| | | | | 1, 1, 1, 1, 1 %e A187818 2 | 3 | |_ _| | | | 2, 1, 1, 1 %e A187818 3 | 1 | |_| | | | 1, 2, 1, 1 %e A187818 4 | 7 | |_ _ _| | | 3, 1, 1 %e A187818 5 | 1 | |_| | | | 1, 1, 2, 1 %e A187818 6 | 3 | |_ _| | | 2, 2, 1 %e A187818 7 | 1 | |_| | | 1, 3, 1 %e A187818 8 | 15 | |_ _ _ _| | 4, 1 %e A187818 9 | 1 | |_| | | | 1, 1, 1, 2 %e A187818 10 | 3 | |_ _| | | 2, 1, 2 %e A187818 11 | 1 | |_| | | 1, 2, 2 %e A187818 12 | 7 | |_ _ _| | 3, 2 %e A187818 13 | 1 | |_| | | 1, 1, 3 %e A187818 14 | 3 | |_ _| | 2, 3 %e A187818 15 | 1 | |_| | 1, 4 %e A187818 16 | 31 | |_ _ _ _ _| 5 %e A187818 . %e A187818 The first largest region in the diagram is the 16th region which contains 16 parts and the sum of parts is 31, so T(5,1) = 31. The second largest region is the 8th region which contains 8 parts and the sum of parts is 15, so T(5,2) = 15. The third and the fourth largest regions are both the 4th region and the 12th region, each contains 4 parts and the sum of parts is 7, so T(5,3) = 7 and T(5,4) = 7. And so on. The sequence of the sum of all parts of the k-th largest region of the diagram is [31, 15, 7, 7, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1], the same as the 5th row of triangle, as shown below. %e A187818 Triangle begins: %e A187818 1; %e A187818 3,1; %e A187818 7,3,1,1; %e A187818 15,7,3,3,1,1,1,1; %e A187818 31,15,7,7,3,3,3,3,1,1,1,1,1,1,1,1; %e A187818 63,31,15,15,7,7,7,7,3,3,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1; %e A187818 ... %Y A187818 Cf. A000079, A000225, A001511, A001787, A001792, A006519, A011782, A038712, A065120, A187816, A228525, A228369. %K A187818 nonn,tabf,easy %O A187818 1,2 %A A187818 _Omar E. Pol_, Sep 10 2013