This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187821 #10 Dec 27 2012 07:02:37 %S A187821 1,1,1,1,1,2,2,2,2,3,4,3,4,5,6,5,6,7,9,7,9,11,12,11,12,15,17,15,17,21, %T A187821 22,21,22,27,29,27,29,36,36,36,36,45,47,45,47,57,58,57,58,69,73,69,73, %U A187821 86,88,86,88,103,109,103,109,125,130,125,130,147,157,147,157,176,184,176,184,205,220,205,220,241,256,241,256 %N A187821 Number of non-squashing partitions of n into odd parts. %C A187821 A non-squashing partition of n is a partition p(1) + p(2) + ... + p(m) = n such that p(k) >= sum(j=k+1..m, p(j) ). %H A187821 Joerg Arndt, <a href="/A187821/b187821.txt">Table of n, a(n) for n = 0..1000</a> %e A187821 The a(33) = a(35) = 27 non-squashing partitions of 33 and 35 into odd parts are %e A187821 [ 1] [ 17 9 5 1 1 ] [ 1] [ 19 9 5 1 1 ] %e A187821 [ 2] [ 17 9 7 ] [ 2] [ 19 9 7 ] %e A187821 [ 3] [ 17 11 3 1 1 ] [ 3] [ 19 11 3 1 1 ] %e A187821 [ 4] [ 17 11 5 ] [ 4] [ 19 11 5 ] %e A187821 [ 5] [ 17 13 3 ] [ 5] [ 19 13 3 ] %e A187821 [ 6] [ 17 15 1 ] [ 6] [ 19 15 1 ] %e A187821 [ 7] [ 19 7 5 1 1 ] [ 7] [ 21 7 5 1 1 ] %e A187821 [ 8] [ 19 7 7 ] [ 8] [ 21 7 7 ] %e A187821 [ 9] [ 19 9 3 1 1 ] [ 9] [ 21 9 3 1 1 ] %e A187821 [10] [ 19 9 5 ] [10] [ 21 9 5 ] %e A187821 [11] [ 19 11 3 ] [11] [ 21 11 3 ] %e A187821 [12] [ 19 13 1 ] [12] [ 21 13 1 ] %e A187821 [13] [ 21 7 3 1 1 ] [13] [ 23 7 3 1 1 ] %e A187821 [14] [ 21 7 5 ] [14] [ 23 7 5 ] %e A187821 [15] [ 21 9 3 ] [15] [ 23 9 3 ] %e A187821 [16] [ 21 11 1 ] [16] [ 23 11 1 ] %e A187821 [17] [ 23 5 3 1 1 ] [17] [ 25 5 3 1 1 ] %e A187821 [18] [ 23 5 5 ] [18] [ 25 5 5 ] %e A187821 [19] [ 23 7 3 ] [19] [ 25 7 3 ] %e A187821 [20] [ 23 9 1 ] [20] [ 25 9 1 ] %e A187821 [21] [ 25 5 3 ] [21] [ 27 5 3 ] %e A187821 [22] [ 25 7 1 ] [22] [ 27 7 1 ] %e A187821 [23] [ 27 3 3 ] [23] [ 29 3 3 ] %e A187821 [24] [ 27 5 1 ] [24] [ 29 5 1 ] %e A187821 [25] [ 29 3 1 ] [25] [ 31 3 1 ] %e A187821 [26] [ 31 1 1 ] [26] [ 33 1 1 ] %e A187821 [27] [ 33 ] [27] [ 35 ] %Y A187821 Cf. A018819 and A000123 (non-squashing partitions, also binary partitions). %Y A187821 Cf. A088567 (non-squashing partitions into distinct parts) %K A187821 nonn %O A187821 0,6 %A A187821 _Joerg Arndt_, Dec 27 2012