This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187822 #28 Jan 31 2021 20:01:57 %S A187822 1,2,4,16,64,140,440,700,1650,2304,5180,3960,3900,14400,15600,43560, %T A187822 39600,57600,56700,81900,25200,112896,100100,177840,198000,411840, %U A187822 222768,226800,637560,752400,556920,907200,409500,565488,1306800,1984500,1884960 %N A187822 Smallest k such that the partial sums of the divisors of k (taken in increasing order) contain exactly n primes. %C A187822 It appears that a(n) is even for n > 0 and nonsquarefree for n > 1. We also conjecture that there is an infinite subsequence of squares 1, 4, 16, 64, 2304, 14400, 57600, 112896, .... %C A187822 The corresponding triangle in which row n gives the n primes starts with: %C A187822 k = 1 -> no prime %C A187822 k = 2 -> 3; %C A187822 k = 4 -> 3, 7; %C A187822 k = 16 -> 3, 7, 31; %C A187822 k = 64 -> 3, 7, 31, 127; %C A187822 k = 140 -> 3, 7, 19, 29, 43; %C A187822 k = 440 -> 3, 7, 41, 61, 83, 167; ... %H A187822 Amiram Eldar, <a href="/A187822/b187822.txt">Table of n, a(n) for n = 0..126</a> %e A187822 a(4) = 64 because the partial sums of the divisors {1, 2, 4, 8, 16, 32, 64} that generate 4 prime numbers are: %e A187822 1 + 2 = 3; %e A187822 1 + 2 + 4 = 7; %e A187822 1 + 2 + 4 + 8 + 16 = 31; %e A187822 1 + 2 + 4 + 8 + 16 + 32 + 64 = 127. %p A187822 read("transforms") : %p A187822 A187822 := proc(n) %p A187822 local k,ps,pct ; %p A187822 if n = 0 then %p A187822 return 1; %p A187822 end if; %p A187822 for k from 1 do %p A187822 ps := sort(convert(numtheory[divisors](k),list)) ; %p A187822 ps := PSUM(ps) ; %p A187822 pct := 0 ; %p A187822 for p in ps do %p A187822 if isprime(p) then %p A187822 pct := pct+1 ; %p A187822 end if; %p A187822 end do: %p A187822 if pct = n then %p A187822 return k ; %p A187822 end if; %p A187822 end do: %p A187822 end proc: # _R. J. Mathar_, Jan 18 2013 %t A187822 a[n_] := Catch[ For[k = 1, True, k++, cnt = Count[ Accumulate[ Divisors[k]], _?PrimeQ]; If[cnt == n, Print[{n, k}]; Throw[k]]]]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Dec 27 2012 *) %o A187822 (PARI) A187822(n)={n<1||for(k=1,9e9,numdiv(k)<n&next; my(t=divisors(k),s=1,c); for(i=2,#t,isprime(s+=t[i])&c++==n&return(k)))} \\ _M. F. Hasler_, Dec 29 2012 %Y A187822 Cf. A023194, A062700, A000203. %K A187822 nonn %O A187822 0,2 %A A187822 _Michel Lagneau_, Dec 27 2012