A187823 Primes of the form (p^x - 1)/(p^y - 1), where p is prime, y > 1, and y is the largest proper divisor of x.
5, 17, 73, 257, 757, 65537, 262657, 1772893, 4432676798593, 48551233240513, 378890487846991, 3156404483062657, 17390284913300671, 280343912759041771, 319913861581383373, 487014306953858713, 5559917315850179173, 7824668707707203971, 8443914727229480773, 32564717507686012813
Offset: 1
Keywords
Examples
5 = (2^4 - 1)/(2^2 - 1)= 11_{2^2} = 11_4. 17 = (2^8 - 1)/(2^4 - 1) = 11_{2^4} = 11_16. 257 = (2^16 - 1)/(2^8 - 1) = 11_{2^8} = 11_256. 757 = (3^9 - 1)/(3^3 - 1) = 111_{3^3} = 111_27. 262657 = (2^27 - 1)/(2^9 - 1) = 111_{2^9} = 111_512. 655357 = (2^32 - 1)/(2^16 - 1) = 11_{2^16} = 11_655356. 4432676798593 = (2^49 - 1)/(2^7 - 1) = 1111111_{2^7} = 1111111_128. 5559917315850179173 = (11^27 - 1)/(11^9 - 1) = 111_{11^3} = 111_1331. 227376585863531112677002031251 = (5^49 - 1)/(5^7 - 1) = 1111111_{5^7}. 467056170954468301850494793701001 = (43^25 - 1)/(43^5 - 1) = 11111_{43^5}. 36241275390490156321975496980895092369525753 = (263^27 - 1)/(263^9 - 1). 284661951906193731091845096405947222295673201 = (167^25 - 1)/(167^5 - 1).
Links
- Don Reble, Table of n, a(n) for n = 1..50000
- Paul T. Bateman and Rosemarie M. Stemmler, Waring's problem for algebraic number fields and primes of the form (p^r-1)/(p^d-1), Illinois J. Math. 6 (1962), pp. 142-156.
- Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.
- Index entries for sequences related to Brazilian numbers.
Comments