cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187823 Primes of the form (p^x - 1)/(p^y - 1), where p is prime, y > 1, and y is the largest proper divisor of x.

Original entry on oeis.org

5, 17, 73, 257, 757, 65537, 262657, 1772893, 4432676798593, 48551233240513, 378890487846991, 3156404483062657, 17390284913300671, 280343912759041771, 319913861581383373, 487014306953858713, 5559917315850179173, 7824668707707203971, 8443914727229480773, 32564717507686012813
Offset: 1

Views

Author

Bernard Schott, Dec 27 2012

Keywords

Comments

Complement of A023195 relative to A003424.
Only eight primes of this form don't exceed 1.275*10^10 (see Bateman and Stemmler):
(1) three of the form (p^9 - 1)/(p^3 - 1): 73 (p=2), 757 (p=3), 1772893 (p=11);
(2) four of the form (2^x - 1)/(2^y - 1) with x = 2y: 5 (x=4), 17 (x=8), 257 (x=16), 65537 (x=32); and
(3) the prime 262657 = (2^27 - 1)/(2^9 - 1).
Some of these prime numbers are not Brazilian, these are Fermat primes > 3: 5, 17, 257, 65537, so they are in A220627.
The other primes are Brazilian so they are in A085104, example: (p^9 - 1)/(p^3 - 1) = 111_{p^3} with 73 = 111_8, 757 = 111_27, 1772893 = 111_1331, also 262657 = 111_512 [See section V.4 of Quadrature article in Links] (comment improved in Mar 03 2023).
Comments from Don Reble, Jul 28 2022 (Start)
This is an easy sequence that looks hard.
Note that x must be a power of a prime; otherwise (p^x-1)/(p^y-1) has too many cyclotomic factors.
Almost all values are (p^9-1)/(p^3-1). The exceptions below 10^45
are the Fermat primes 5, 17, 257, 65537 and also
262657, 4432676798593, 5559917315850179173,
227376585863531112677002031251,
467056170954468301850494793701001,
36241275390490156321975496980895092369525753,
284661951906193731091845096405947222295673201 (see examples).
(End)

Examples

			5 = (2^4 - 1)/(2^2 - 1)= 11_{2^2} = 11_4.
17 = (2^8 - 1)/(2^4 - 1) = 11_{2^4} = 11_16.
257 = (2^16 - 1)/(2^8 - 1) = 11_{2^8} = 11_256.
757 = (3^9 - 1)/(3^3 - 1) = 111_{3^3} = 111_27.
262657 = (2^27 - 1)/(2^9 - 1) = 111_{2^9} = 111_512.
655357 = (2^32 - 1)/(2^16 - 1) = 11_{2^16} = 11_655356.
4432676798593 = (2^49 - 1)/(2^7 - 1) = 1111111_{2^7} = 1111111_128.
5559917315850179173 = (11^27 - 1)/(11^9 - 1) = 111_{11^3} = 111_1331.
227376585863531112677002031251 = (5^49 - 1)/(5^7 - 1) = 1111111_{5^7}.
467056170954468301850494793701001 = (43^25 - 1)/(43^5 - 1) = 11111_{43^5}.
36241275390490156321975496980895092369525753 = (263^27 - 1)/(263^9 - 1).
284661951906193731091845096405947222295673201 = (167^25 - 1)/(167^5 - 1).
		

Crossrefs

Equals A003424 \ A023195.

Extensions

a(9)-a(16) from Don Reble, Jul 28 2022
a(17)-a(20) from Don Reble, Mar 21 2023