A187828 Partition the sequence of consecutive primes into groups so that the absolute value of the alternating sum (-1)^n (An) with n = 0,....m in each group is prime.
3, 19, 37, 53, 71, 109, 149, 211, 251, 277, 307, 359, 397, 449, 479, 521, 593, 641, 709, 769, 823, 859, 919, 1009, 1033, 1087, 1171, 1217, 1277, 1321, 1367, 1399, 1459, 1549, 1609, 1637, 1693, 1747, 1879, 1973, 2039, 2099, 2213, 2341, 2399, 2437, 2531, 2663, 2777, 2879, 2939, 3061, 3251, 3433
Offset: 1
Keywords
Examples
a(1)=3 because the absolute value of the alternating sum (-1)^n (An) where An = (2, 3, 5, 7) with n = (0,1,2,3), is prime; a(2)=19 because the absolute value of the alternating sum (-1)^n (An) where An = (11, 13, 17, 19, 23) with n = (0, 1, 2, 3), is prime; a(3)=37 because the absolute value of the alternating sum (-1)^n (An) where An = (29, 31, 37, 41, 43) with n = (0, 1, 2, 3, 4) is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
p:= 1: R:= NULL: for count from 1 to 50 do q:= nextprime(p); p:= nextprime(q); t:= q-p; e:= 1; do p:= nextprime(p); t:= t + e*p; e:= -e; until isprime(abs(t)); R:= R, abs(t); od: R; # Robert Israel, Jun 23 2020
Formula
a(x) = Sum_{(-1)^n (An) with n = (0, 1, 2..m)}.
Extensions
More terms from Robert Israel, Jun 24 2020
Comments