This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187847 #39 Jan 07 2016 03:51:27 %S A187847 1,0,1,4,14,78,504,3720,30960,256320,2656080,30078720,369774720, %T A187847 4906137600,69894316800,1064341555200,16190733081600,279499828608000, %U A187847 5100017213491200,98087346669312000,1983334021853184000,42063950934061056000,933754193111900160000 %N A187847 Number of permutations p of [n] with p(i) <> i^2. %C A187847 Also number of permutations of [n] that have no square fixed points. %H A187847 Alois P. Heinz, <a href="/A187847/b187847.txt">Table of n, a(n) for n = 0..200</a> %F A187847 a(n) = Sum_{j=0..floor(sqrt(n))} (-1)^j*C(floor(sqrt(n)),j)*(n-j)!. %e A187847 a(3) = 4: (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1). %p A187847 with(LinearAlgebra): %p A187847 a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> `if`(j<>i^2, 1, 0)))): %p A187847 seq(a(n), n=0..15); %p A187847 # second Maple program: %p A187847 a:= n->(p->add((-1)^(j)*binomial(p, j)*(n-j)!, j=0..p))(floor(sqrt(n))): %p A187847 seq(a(n), n=0..25); # _Alois P. Heinz_, Nov 02 2014 %t A187847 a[n_] := With[{p = Floor[Sqrt[n]]}, Sum[(-1)^j*Binomial[p, j]*(n-j)!, {j, 0, p}]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 25}] (* _Jean-François Alcover_, Jan 07 2016, adapted from Maple *) %Y A187847 Cf. A161131, A161132, A247978. %K A187847 nonn %O A187847 0,4 %A A187847 _Alois P. Heinz_, Apr 11 2011