A187851 Number of 3-step king-knight's tours (piece capable of both kinds of moves) on an n X n board summed over all starting positions.
0, 24, 304, 1056, 2312, 4048, 6264, 8960, 12136, 15792, 19928, 24544, 29640, 35216, 41272, 47808, 54824, 62320, 70296, 78752, 87688, 97104, 107000, 117376, 128232, 139568, 151384, 163680, 176456, 189712, 203448, 217664, 232360, 247536, 263192
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..0..0..1....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0 ..0..2..0..0....0..0..2..0....3..0..0..0....0..0..0..0....0..0..0..1 ..0..0..0..0....0..3..1..0....0..2..0..0....0..0..2..0....0..2..3..0 ..3..0..0..0....0..0..0..0....0..1..0..0....3..1..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187850.
Formula
Empirical: a(n) = 240*n^2 - 904*n + 832 for n>3.
Conjectures from Colin Barker, Apr 26 2018: (Start)
G.f.: 8*x^2*(3 + 29*x + 27*x^2 + 4*x^3 - 3*x^4) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6.
(End)
Comments