A187852 Number of 4-step king-knight's tours (piece capable of both kinds of moves) on an n X n board summed over all starting positions.
0, 24, 1400, 7620, 20952, 41652, 69456, 104268, 146088, 194916, 250752, 313596, 383448, 460308, 544176, 635052, 732936, 837828, 949728, 1068636, 1194552, 1327476, 1467408, 1614348, 1768296, 1929252, 2097216, 2272188, 2454168, 2643156
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..0..0..0....0..0..2..0....0..0..0..0....0..2..3..0....0..4..0..0 ..0..0..0..1....0..0..1..0....0..0..2..0....0..0..4..0....1..0..0..0 ..0..3..2..0....0..0..0..3....3..0..0..1....1..0..0..0....0..0..3..0 ..0..0..0..4....0..4..0..0....4..0..0..0....0..0..0..0....0..2..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187850.
Formula
Empirical: a(n) = 3504*n^2 - 17748*n + 21996 for n>5.
Conjectures from Colin Barker, Apr 26 2018: (Start)
G.f.: 4*x^2*(6 + 332*x + 873*x^2 + 567*x^3 + 64*x^4 - 66*x^5 - 24*x^6) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>8.
(End)
Comments