A187854 Number of 6-step king-knight's tours (piece capable of both kinds of moves) on an n X n board summed over all starting positions.
0, 0, 16032, 292776, 1400168, 3807828, 7700944, 13082348, 19910456, 28160124, 37824352, 48902340, 61394088, 75299596, 90618864, 107351892, 125498680, 145059228, 166033536, 188421604, 212223432, 237439020, 264068368, 292111476
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..5..4..0....0..0..0..0....0..0..0..0....0..4..0..6....0..0..2..0 ..1..6..3..0....0..4..0..0....0..1..4..6....0..0..5..0....0..0..3..1 ..0..0..2..0....5..3..0..0....0..0..5..2....0..1..3..0....0..0..5..0 ..0..0..0..0....1..2..6..0....0..3..0..0....0..0..0..2....6..4..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187850.
Formula
Empirical: a(n) = 706880*n^2 - 5180252*n + 9274644 for n>9.
Conjectures from Colin Barker, Apr 26 2018: (Start)
G.f.: 4*x^3*(4008 + 61170*x + 142484*x^2 + 117405*x^3 + 46297*x^4 + 708*x^5 - 10396*x^6 - 6286*x^7 - 1750*x^8 - 200*x^9) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>12.
(End)
Comments