This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A187857 #8 Jul 22 2025 10:55:32 %S A187857 1,4,0,9,5,0,16,27,2,0,25,65,81,0,0,36,119,254,216,0,0,49,189,578,968, %T A187857 486,0,0,64,275,1030,2754,3320,846,0,0,81,377,1610,5428,11986,9932, %U A187857 1206,0,0,100,495,2318,9237,26836,47962,26584,1008,0,0,121,629,3154,14040 %N A187857 T(n,k)=Number of n-step one space for components leftwards or up, two space for components rightwards or down asymmetric quasi-queen's tours (antidiagonal moves become knight moves) on a kXk board summed over all starting positions. %C A187857 Table starts %C A187857 .1.4....9.....16......25.......36........49.......64.......81.....100.....121 %C A187857 .0.5...27.....65.....119......189.......275......377......495.....629.....779 %C A187857 .0.2...81....254.....578.....1030......1610.....2318.....3154....4118....5210 %C A187857 .0.0..216....968....2754.....5428......9237....14040....19837...26628...34413 %C A187857 .0.0..486...3320...11986....26836.....50378....81124...120051..166504..220483 %C A187857 .0.0..846...9932...47962...126397....262409...452766...707541.1017934.1387600 %C A187857 .0.0.1206..26584..180750...568870...1314428..2456614..4062007.6094090 %C A187857 .0.0.1008..61668..636102..2432312...6343874.12918800.22675997 %C A187857 .0.0..414.124880.2090520..9934272..29607932.65963326 %C A187857 .0.0....0.219008.6387404.38766870.133665550 %H A187857 R. H. Hardin, <a href="/A187857/b187857.txt">Table of n, a(n) for n = 1..130</a> %F A187857 Empirical: T(1,k) = k^2 %F A187857 Empirical: T(2,k) = 8*k^2 - 18*k + 9 for k>1 %F A187857 Empirical: T(3,k) = 64*k^2 - 252*k + 238 for k>3 %F A187857 Empirical: T(4,k) = 497*k^2 - 2652*k + 3448 for k>5 %F A187857 Empirical: T(5,k) = 3763*k^2 - 25044*k + 40644 for k>7 %F A187857 Empirical: T(6,k) = 28294*k^2 - 224508*k + 433614 for k>9 %F A187857 Empirical: T(7,k) = 211612*k^2 - 1941340*k + 4328678 for k>11 %F A187857 Empirical: T(8,k) = 1575830*k^2 - 16367550*k + 41250447 for k>13 %F A187857 Empirical: T(9,k) = 11710007*k^2 - 135575032*k + 380311550 for k>15 %F A187857 Empirical: T(10,k) = 86897560*k^2 - 1108193530*k + 3420011978 for k>17 %e A187857 Some n=4 solutions for 4X4 %e A187857 ..0..0..1..0....4..0..0..0....0..0..0..0....0..3..0..4....0..0..0..0 %e A187857 ..0..3..0..0....0..3..0..0....0..2..1..0....0..0..2..1....3..2..0..0 %e A187857 ..0..0..2..0....0..0..2..0....0..4..0..0....0..0..0..0....0..1..0..0 %e A187857 ..0..0..0..4....0..0..0..1....0..3..0..0....0..0..0..0....0..0..4..0 %Y A187857 Row 2 is A181890(n-2) %K A187857 nonn,tabl %O A187857 1,2 %A A187857 _R. H. Hardin_ Mar 14 2011