cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187861 Number of 6-step one space for components leftwards or up, two space for components rightwards or down asymmetric quasi-queen's tours (antidiagonal moves become knight moves) on an n X n board summed over all starting positions.

Original entry on oeis.org

0, 0, 846, 9932, 47962, 126397, 262409, 452766, 707541, 1017934, 1387600, 1813854, 2296696, 2836126, 3432144, 4084750, 4793944, 5559726, 6382096, 7261054, 8196600, 9188734, 10237456, 11342766, 12504664, 13723150, 14998224, 16329886, 17718136
Offset: 1

Views

Author

R. H. Hardin, Mar 14 2011

Keywords

Comments

Row 6 of A187857.

Examples

			Some solutions for 4 X 4:
..0..0..0..0....5..0..6..0....0..3..2..6....0..0..1..0....0..0..0..1
..3..2..4..0....4..3..0..0....1..0..0..5....0..5..0..0....0..0..3..0
..0..1..0..0....0..0..2..0....0..0..0..4....3..2..4..0....6..5..2..0
..6..5..0..0....1..0..0..0....0..0..0..0....6..0..0..0....0..0..4..0
		

Crossrefs

Cf. A187857.

Formula

Empirical: a(n) = 28294*n^2 - 224508*n + 433614 for n>9.
Conjectures from Colin Barker, Apr 26 2018: (Start)
G.f.: x^3*(846 + 7394*x + 20704*x^2 + 11461*x^3 + 17172*x^4 - 3232*x^5 + 10073*x^6 - 8800*x^7 + 3655*x^8 - 2685*x^9) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>12.
(End)