A187861 Number of 6-step one space for components leftwards or up, two space for components rightwards or down asymmetric quasi-queen's tours (antidiagonal moves become knight moves) on an n X n board summed over all starting positions.
0, 0, 846, 9932, 47962, 126397, 262409, 452766, 707541, 1017934, 1387600, 1813854, 2296696, 2836126, 3432144, 4084750, 4793944, 5559726, 6382096, 7261054, 8196600, 9188734, 10237456, 11342766, 12504664, 13723150, 14998224, 16329886, 17718136
Offset: 1
Keywords
Examples
Some solutions for 4 X 4: ..0..0..0..0....5..0..6..0....0..3..2..6....0..0..1..0....0..0..0..1 ..3..2..4..0....4..3..0..0....1..0..0..5....0..5..0..0....0..0..3..0 ..0..1..0..0....0..0..2..0....0..0..0..4....3..2..4..0....6..5..2..0 ..6..5..0..0....1..0..0..0....0..0..0..0....6..0..0..0....0..0..4..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Crossrefs
Cf. A187857.
Formula
Empirical: a(n) = 28294*n^2 - 224508*n + 433614 for n>9.
Conjectures from Colin Barker, Apr 26 2018: (Start)
G.f.: x^3*(846 + 7394*x + 20704*x^2 + 11461*x^3 + 17172*x^4 - 3232*x^5 + 10073*x^6 - 8800*x^7 + 3655*x^8 - 2685*x^9) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>12.
(End)
Comments