A187863 Number of 8-step one space for components leftwards or up, two space for components rightwards or down asymmetric quasi-queen's tours (antidiagonal moves become knight moves) on an n X n board summed over all starting positions.
0, 0, 1008, 61668, 636102, 2432312, 6343874, 12918800, 22675997, 35694138, 52156394, 71825663, 94825088, 120967427, 150298947, 182782127, 218416967, 257203467, 299141627, 344231447, 392472927, 443866067, 498410867, 556107327
Offset: 1
Keywords
Examples
Some solutions for 4X4 ..0..7..0..0....0..7..0..0....0..0..0..3....5..0..0..0....0..0..5..0 ..1..6..0..0....1..6..2..0....7..1..0..2....4..0..7..0....8..0..4..0 ..3..5..4..8....8..5..4..0....0..6..5..4....0..3..6..0....7..6..0..3 ..2..0..0..0....0..0..3..0....8..0..0..0....0..8..2..1....0..2..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..50
Formula
Empirical: a(n) = 1575830*n^2 - 16367550*n + 41250447 for n>13
Comments