cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A187907 Rank transform of the sequence floor((4 - sqrt(5))*n); complement of A187908.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 16, 19, 20, 23, 24, 26, 28, 30, 32, 34, 36, 38, 40, 41, 43, 46, 48, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 71, 73, 74, 76, 78, 80, 82, 84, 86, 88, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 139, 141, 143, 145, 147, 149, 151, 153, 155
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2011

Keywords

Comments

See A187224. A187232(n) = A187907(n) for n=1..20; A187232(21)=39 and A187907(21)=40.

Crossrefs

Programs

  • Mathematica
    r=4-5^(1/2);
    seqA = Table[Floor[r*n], {n, 1, 220}] (* A187330 *)
    seqB = Table[n, {n, 1, 220}];  (* A000027 *)
    jointRank[{seqA_,
       seqB_}] := {Flatten@Position[#1, {_, 1}],
        Flatten@Position[#1, {_, 2}]} &[
      Sort@Flatten[{{#1, 1} & /@ seqA, {#1, 2} & /@ seqB}, 1]];
    limseqU =
    FixedPoint[jointRank[{seqA, #1[[1]]}] &,
       jointRank[{seqA, seqB}]][[1]] (* A187907 *)
    Complement[Range[Length[seqA]], limseqU]  (* A187908 *)
    (* Peter J. C. Moses, Mar 15 2011 *)
  • Maxima
    makelist(floor((4-sqrt(5))*n),n,1,100); /* Martin Ettl, Oct 17 2012 */

A187233 Complement of A187232.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 17, 18, 21, 22, 25, 27, 29, 31, 33, 35, 37, 40, 42, 43, 45, 48, 50, 52, 54, 56, 58, 60, 63, 65, 67, 68, 71, 73, 75, 77, 79, 81, 83, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 178, 180
Offset: 1

Views

Author

Clark Kimberling, Mar 07 2011

Keywords

Comments

See A187224. A187233(n)=A187908(n) for n=1,2,...,18; A187233(19)=40 and A187908(19)=39.

Crossrefs

Programs

Showing 1-2 of 2 results.