A187911 Rank transform of the sequence (1+floor(n*r)), where r=(-1+sqrt(5))/2; complement of A187912.
1, 3, 4, 5, 7, 8, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 47, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 63, 64, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 91, 93, 94, 96, 98, 99, 100, 101, 103, 105, 106, 107, 108, 110, 111, 112, 114, 116, 117, 118, 119
Offset: 1
Keywords
Programs
-
Mathematica
r=(-1+5^(1/2))/2; seqA = Table[1+Floor[r*n], {n, 1, 220}] (* A019446 *) seqB = Table[n, {n, 1, 220}]; (* A000027 *) jointRank[{seqA_, seqB_}] := {Flatten@Position[#1, {_, 1}], Flatten@Position[#1, {_, 2}]} &[ Sort@Flatten[{{#1, 1} & /@ seqA, {#1, 2} & /@ seqB}, 1]]; limseqU = FixedPoint[jointRank[{seqA, #1[[1]]}] &, jointRank[{seqA, seqB}]][[1]] (* A187911 *) Complement[Range[Length[seqA]], limseqU] (* A187912 *) (* Peter J. C. Moses, Mar 15 2011 *)
Comments