A187913 Generalized Riordan array based on the Fine's numbers A000957.
1, 0, 1, 1, 1, 1, 2, 4, 1, 1, 6, 10, 5, 2, 1, 18, 32, 13, 9, 2, 1, 57, 100, 44, 28, 10, 3, 1, 186, 329, 142, 100, 32, 15, 3, 1, 622, 1101, 480, 344, 119, 55, 16, 4, 1, 2120, 3761, 1640, 1214, 420, 216, 60, 22, 4, 1, 7338, 13035, 5698, 4300, 1517, 810, 243, 92, 23, 5, 1
Offset: 0
Examples
Triangle begins 1, 0, 1, 1, 1, 1, 2, 4, 1, 1, 6, 10, 5, 2, 1, 18, 32, 13, 9, 2, 1, 57, 100, 44, 28, 10, 3, 1, 186, 329, 142, 100, 32, 15, 3, 1, 622, 1101, 480, 344, 119, 55, 16, 4, 1, 2120, 3761, 1640, 1214, 420, 216, 60, 22, 4, 1, 7338, 13035, 5698, 4300, 1517, 810, 243, 92, 23, 5, 1 Production matrix is 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 0, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 0, 1 Thus 57=1.0+0.18+1.32+1.13+1.9+1.2+1.1; 100=1.18+1.32+2.13+2.9+2.2+2.1; 44=1.32+0.13+1.9+1.2+1.1
Formula
Let g(x)=(1+2x-sqrt(1-4x))/(2x(2+x)) be the g.f. of the Fine's numbers A000957. Then column k has
g.f. x^k*g(x)^(k+1)/(1-xg(x)-x^2g(x)^2)^floor((k+1)/2).
Comments