cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187914 Generalized Riordan array based on the binomial transform of the Fine's numbers A000957.

This page as a plain text file.
%I A187914 #4 Mar 30 2012 18:59:28
%S A187914 1,1,1,2,3,1,6,10,4,1,21,36,15,6,1,79,137,58,29,7,1,311,543,232,132,
%T A187914 37,9,1,1265,2219,954,590,179,57,10,1,5275,9285,4010,2628,837,315,68,
%U A187914 12,1,22431,39587,17156,11732,3861,1629,396,94,13,1,96900,171369,74469,52608,17726,8127,2133,612,108,15,1
%N A187914 Generalized Riordan array based on the binomial transform of the Fine's numbers A000957.
%C A187914 Row sums are A033321(n+1). Second column is A002212(n+1). Equal to A007318*A187913.
%F A187914 Let g(x)=(1+x-sqrt(1-6x+5x^2))/(2x(2-x)) be the g.f. of A033321, the binomial transform of the Fine numbers.
%F A187914 Then the g.f. of the k-th column is x^k*g(x)^((k+2)/2)/(1-2*x*g(x))^(k/2) if k is even, and
%F A187914 x^k*g(x)^((k+1)/2)/(1-2*x*g(x))^((k+1)/2) if k is odd. Otherwise put, column k has g.f.
%F A187914 g.f. x^k*g(x)^(k+1)/(1-xg(x)-x^2g(x)^2)^floor((k+1)/2).
%e A187914 Triangle begins
%e A187914 1,
%e A187914 1, 1,
%e A187914 2, 3, 1,
%e A187914 6, 10, 4, 1,
%e A187914 21, 36, 15, 6, 1,
%e A187914 79, 137, 58, 29, 7, 1,
%e A187914 311, 543, 232, 132, 37, 9, 1,
%e A187914 1265, 2219, 954, 590, 179, 57, 10, 1,
%e A187914 5275, 9285, 4010, 2628, 837, 315, 68, 12, 1,
%e A187914 22431, 39587, 17156, 11732, 3861, 1629, 396, 94, 13, 1
%e A187914 Production matrix is
%e A187914 1, 1,
%e A187914 1, 2, 1,
%e A187914 1, 2, 1, 1,
%e A187914 1, 2, 1, 2, 1,
%e A187914 1, 2, 1, 2, 1, 1,
%e A187914 1, 2, 1, 2, 1, 2, 1,
%e A187914 1, 2, 1, 2, 1, 2, 1, 1,
%e A187914 1, 2, 1, 2, 1, 2, 1, 2, 1,
%e A187914 1, 2, 1, 2, 1, 2, 1, 2, 1, 1;
%e A187914 Hence, for instance, we have
%e A187914 79=1*0+1.21+1.36+1.15+1.6+1.1;
%e A187914 137=1.21+2.36+2.15+2.6+2.1;
%e A187914 58=1.36+1.15+1.6+1.1
%K A187914 nonn,easy,tabl
%O A187914 0,4
%A A187914 _Paul Barry_, Mar 15 2011