cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187929 Odd numbers k such that 1^((k-1)/2) + 2^((k-1)/2) + .... + (k-1)^((k-1)/2) == 0 (mod k).

This page as a plain text file.
%I A187929 #40 Mar 17 2024 02:15:43
%S A187929 1,3,5,7,11,13,15,17,19,23,27,29,31,35,37,39,41,43,47,51,53,55,59,61,
%T A187929 63,67,71,73,75,77,79,83,85,87,89,91,95,97,99,101,103,107,109,111,113,
%U A187929 115,119,123,125,127,131,135,137,139,143,147,149,151,155,157,159
%N A187929 Odd numbers k such that 1^((k-1)/2) + 2^((k-1)/2) + .... + (k-1)^((k-1)/2) == 0 (mod k).
%C A187929 Asymptotic density is 0.379...
%H A187929 Amiram Eldar, <a href="/A187929/b187929.txt">Table of n, a(n) for n = 1..10000</a>
%H A187929 José María Grau, Florian Luca and Antonio M. Oller-Marcén, <a href="https://doi.org/10.1007/s10114-011-1148-7">On a variant of Giuga numbers</a>, Acta Mathematica Sinica, English Series, Vol. 28 No. 4 (2012), pp 653-660; <a href="http://arxiv.org/abs/1103.3428">preprint</a>, arXiv:1103.3428 [math.NT], 2011.
%t A187929 gi[n_]:=Mod[Sum[PowerMod[j,(n-1)/2,n],{j,n-1}],n]; Select[ Range[1,300,2], gi[#]==0&]
%o A187929 (PARI) is(n)=my(e=(n-1)/2);sum(k=1,n-1,Mod(k,n)^e)==0;
%o A187929 select(is,vector(1000,i,2*i-1)) \\ on older versions, switch the arguments
%o A187929 \\ _Charles R Greathouse IV_, Mar 19 2011
%Y A187929 Cf. A007850.
%K A187929 nonn
%O A187929 1,2
%A A187929 _José María Grau Ribas_, Mar 16 2011