cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187980 Number of nondecreasing arrangements of n numbers x(i) in -(n-1)..(n-1) with the sum of sign(x(i))*2^|x(i)| zero.

Original entry on oeis.org

0, 1, 3, 9, 36, 117, 411, 1452, 5040, 17829, 62870, 222458, 789895, 2808018, 10006020, 35713288, 127657287, 456975112, 1637845137, 5876993799, 21110257429, 75900966585, 273140226328, 983733709424, 3545658087397, 12788512426396, 46155740640489, 166684398100813, 602296651467057, 2177492178467267, 7876245417001355
Offset: 1

Views

Author

R. H. Hardin, Mar 18 2011

Keywords

Examples

			All solutions for n=3:
.-1...-2...-1
.-1....1....0
..2....1....0
		

Crossrefs

Column 1 of A187988.

Programs

  • Mathematica
    AatE[n_, nminusfE_, E_] := AatE[n, nminusfE, E] = Module[{a, fEminus, fEplus, f0, resn}, If[E == 0, If[n == 0, 1, 0], a = 0; For[fEminus = 0, fEminus <= nminusfE, fEminus++, For[fEplus = 0, fEplus <= nminusfE - fEminus, fEplus++, f0 = nminusfE - fEminus - fEplus; resn = n - (2^E + 1)*fEminus + (2^E - 1)*fEplus; If[Abs[resn] <= (1 + 2^(E - 1))*f0, a = a + AatE[resn, f0, E - 1]]]]; a]];
    T[n_, k_] := AatE[n, n, n + k - 2];
    Table[T[n, 1], {n, 1, 31}] (* Jean-François Alcover, Sep 18 2024, after R. J. Mathar in A187988 *)

Extensions

More terms from R. J. Mathar, May 11 2023