cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187989 Number of nondecreasing arrangements of 5 numbers x(i) in -(n+3)..(n+3) with the sum of sign(x(i))*2^|x(i)| zero.

This page as a plain text file.
%I A187989 #27 Sep 18 2024 08:17:34
%S A187989 36,57,82,111,144,181,222,267,316,369,426,487,552,621,694,771,852,937,
%T A187989 1026,1119,1216,1317,1422,1531,1644,1761,1882,2007,2136,2269,2406,
%U A187989 2547,2692,2841,2994,3151,3312,3477,3646,3819,3996,4177,4362,4551,4744,4941
%N A187989 Number of nondecreasing arrangements of 5 numbers x(i) in -(n+3)..(n+3) with the sum of sign(x(i))*2^|x(i)| zero.
%H A187989 R. J. Mathar, <a href="/A187989/b187989.txt">Table of n, a(n) for n = 1..86</a> correcting the earlier _R. H. Hardin_ file at a(28).
%e A187989 Some solutions for n=3:
%e A187989   -6  -4  -4  -6  -4  -3  -4  -3  -6  -3  -3  -6  -4  -5  -5  -1
%e A187989   -1  -4  -4  -3  -1  -2  -3   0  -5  -3  -3  -1   1  -4  -2  -1
%e A187989   -1  -4  -3   3   1  -2  -3   0   5  -2  -3   1   1   3  -2  -1
%e A187989    2  -4   3   5   3   3   4   1   5   2  -3   5   2   3   3   1
%e A187989    6   6   5   5   3   3   4   2   5   4   5   5   3   5   5   2
%t A187989 AatE[n_, nminusfE_, E_] := AatE[n, nminusfE, E] = Module[{a, fEminus, fEplus, f0, resn}, If[E == 0, If[n == 0, 1, 0], a = 0; For[fEminus = 0, fEminus <= nminusfE, fEminus++, For[fEplus = 0, fEplus <= nminusfE - fEminus, fEplus++, f0 = nminusfE - fEminus - fEplus; resn = n - (2^E + 1)*fEminus + (2^E - 1)*fEplus; If[Abs[resn] <= (1 + 2^(E - 1))*f0, a = a + AatE[resn, f0, E - 1]]]]; a]];
%t A187989 T[n_, k_] := AatE[n, n, n + k - 2];
%t A187989 Table[T[5, k], {k, 1, 86}] (* _Jean-François Alcover_, Sep 18 2024, after _R. J. Mathar_ in A187988 *)
%Y A187989 Row 5 of A187988.
%K A187989 nonn
%O A187989 1,1
%A A187989 _R. H. Hardin_, Mar 18 2011
%E A187989 a(28) corrected by _R. J. Mathar_, May 09 2023