cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A187988 T(n,k) = number of nondecreasing arrangements of n numbers x(i) in -(n+k-2)..(n+k-2) with the sum of sign(x(i))*2^|x(i)| zero.

Original entry on oeis.org

0, 0, 1, 0, 2, 3, 0, 3, 5, 9, 0, 4, 7, 15, 36, 0, 5, 9, 22, 57, 117, 0, 6, 11, 30, 82, 181, 411, 0, 7, 13, 39, 111, 260, 632, 1452, 0, 8, 15, 49, 144, 355, 912, 2199, 5040, 0, 9, 17, 60, 181, 467, 1257, 3158, 7593, 17829, 0, 10, 19, 72, 222, 597, 1673, 4357, 10920, 26706, 62870
Offset: 1

Views

Author

R. H. Hardin, Mar 18 2011

Keywords

Comments

Table starts
.....0.....0.....0.....0.....0.....0.....0.....0....0....0...0...0..0..0.0
.....1.....2.....3.....4.....5.....6.....7.....8....9...10..11..12.13.14
.....3.....5.....7.....9....11....13....15....17...19...21..23..25.27
.....9....15....22....30....39....49....60....72...85...99.114.130
....36....57....82...111...144...181...222...267..316..369.426
...117...181...260...355...467...597...746...915.1105.1317
...411...632...912..1257..1673..2166..2742..3407.4167
..1452..2199..3158..4357..5825..7592..9689.12148
..5040..7593.10920.15146.20404.26835.34588
.17829.26706.38385.53379.72246.95590

Examples

			Some solutions for n=5 k=3
.-3...-6...-5...-3...-3...-6...-4...-4...-1...-4...-2...-4...-4...-2...-3...-5
.-3...-3...-5...-1...-3...-5...-1...-2...-1...-4...-2...-2...-4...-1....1...-1
.-2...-3...-2....1...-3...-5....0...-2....0...-4...-1....2...-3....1....1....1
..2....4....2....2...-3....6....0....3....0...-4....1....3....3....1....1....4
..4....6....6....2....5....6....4....4....1....6....3....3....5....1....1....4
		

Crossrefs

Row n=4 is A055999(k+1). A187989 (n=5), A187990 (n=6), A187991 (n=7), A187992 (n=8), A187979 (k=n), A187980 (k=1), A187981 (k=2), A187982 (k=3), A187983 (k=4), A187984 (k=5), A187985 (k=6).

Programs

  • Maple
    AatE := proc(n,nminusfE,E)
        option remember ;
        local a,fEminus, fEplus,f0,resn ;
        if E = 0 then
            if n =0 then
                1;
            else
                0;
            end if;
        else
            a :=0 ;
            for fEminus from 0 to nminusfE do
                for fEplus from 0 to nminusfE-fEminus do
                    f0 := nminusfE-fEminus-fEplus ;
                    resn := n-(2^E+1)*fEminus+(2^E-1)*fEplus ;
                    if abs (resn) <= (1+2^(E-1))*f0 then
                        a := a+procname(resn,f0,E-1) ;
                    end if;
                end do:
            end do:
            a ;
        end if;
    end proc:
    A187988 := proc(n,k)
        AatE(n,n,n+k-2) ;
    end proc:
    seq(seq( A187988(n, d-n), n=1..d-1), d=2..15) ; # R. J. Mathar, May 12 2023
  • Mathematica
    AatE[n_, nminusfE_, E_] := AatE[n, nminusfE, E] = Module[{a, fEminus, fEplus, f0, resn}, If[E == 0, If[n == 0, 1, 0], a = 0; For[fEminus = 0, fEminus <= nminusfE, fEminus++, For[fEplus = 0, fEplus <= nminusfE - fEminus, fEplus++, f0 = nminusfE - fEminus - fEplus; resn = n-(2^E+1)*fEminus + (2^E-1)*fEplus; If[Abs[resn] <= (1+2^(E-1))*f0, a = a + AatE[resn, f0, E-1]]]]; a]];
    A187988[n_, k_] := AatE[n, n, n+k-2];
    Table[Table[ A187988[n, d-n], {n, 1, d-1}], {d, 2, 15}] // Flatten (* Jean-François Alcover, Sep 18 2024, after R. J. Mathar *)
Showing 1-1 of 1 results.