cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188039 Positions of 0 in A188038; complement of A188040.

Original entry on oeis.org

2, 7, 12, 19, 24, 31, 36, 41, 48, 53, 60, 65, 70, 77, 82, 89, 94, 101, 106, 111, 118, 123, 130, 135, 140, 147, 152, 159, 164, 171, 176, 181, 188, 193, 200, 205, 210, 217, 222, 229, 234, 239, 246, 251, 258, 263, 270, 275, 280, 287, 292, 299, 304, 309, 316, 321, 328, 333, 340, 345, 350, 357, 362, 369, 374, 379, 386, 391, 398, 403, 408, 415, 420
Offset: 1

Views

Author

Clark Kimberling, Mar 19 2011

Keywords

Comments

See A188014.
There is (conjecturally) a connection a(1+n) = f(n) where f(n) = 3*n +2 +2*floor(n*sqrt 2) is defined in A120861. Tested numerically up to n=40000. - R. J. Mathar, Jul 22 2020

Crossrefs

Programs

  • Maple
    A188038 := proc(n)
        if n = 1 then
            1;
        else
            floor(n*sqrt(2))-floor((n-2)*sqrt(2))-2 ;
        end if;
    end proc:
    isA188039 := proc(n)
        if A188038(n) = 0 then
            true;
        else
            false;
        end if;
    end proc:
    A188039 := proc(n)
        option remember;
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA188039(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Jul 22 2020
  • Mathematica
    (* See A188038. *)