cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188062 Triangle of the value of Bell polynomials of the second kind B(n,m)(6,30,120,360,720,720) in row n, column m.

This page as a plain text file.
%I A188062 #36 Feb 16 2025 08:33:14
%S A188062 6,30,36,120,540,216,360,5580,6480,1296,720,46800,124200,64800,7776,
%T A188062 720,331920,1895400,1976400,583200,46656,0,1995840,24736320,46947600,
%U A188062 25855200,4898880,279936,0,9979200,284074560,946527120,876355200,297198720,39191040,1679616,0,39916800,2900620800
%N A188062 Triangle of the value of Bell polynomials of the second kind B(n,m)(6,30,120,360,720,720) in row n, column m.
%C A188062 B(n,m)(6*x^5,30*x^4,120*x^3,360*x^2,720*x,720) = B(n,m)*x^(6*m-n) allows the computation of the Bell polynomials for a generalized set of arguments with a single parameter x.
%H A188062 Ch. A. Charalambides, <a href="http://www.jstor.org/stable/25052047">On the generalized discrete distributions and the Bell polynomials</a>, Sankhya: Ind. J. Stat. B 39 (10) (1977) 36-44
%H A188062 F. T. Howard, <a href="http://dx.doi.org/10.1016/0012-365X(82)90136-4">A theorem relating potential and bell polynomials</a>, Discr. Math. 39 (2) (1982) 128-143.
%H A188062 Vladimir Kruchinin, <a href="http://arxiv.org/abs/1104.5065">Derivation of Bell Polynomials of the Second Kind </a>, arXiv:1104.5065 [math.CO], 2011.
%H A188062 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>
%F A188062 B(n,m) = n!/m!*sum_{k=0..m} binomial(m,k)*binomial(6*k,n)*(-1)^(m-k).
%F A188062 B(n,m) = n!/m! *sum_{k=0..n-m} sum_{j=0..n} 3^j *binomial(j,n-3*k-3*m+2*j) *binomial(k+m,j) *binomial(m,k) *2^(m-k).
%e A188062 Table begins:
%e A188062     6;
%e A188062    30,    36;
%e A188062   120,   540,    216;
%e A188062   360,  5580,   6480,  1296;
%e A188062   720, 46800, 124200, 64800, 7776;
%p A188062 # The function BellMatrix is defined in A264428.
%p A188062 # Adds (1,0,0,0, ..) as column 0.
%p A188062 BellMatrix(n -> `if`(n<6,[6,30,120,360,720,720][n+1],0), 9); # _Peter Luschny_, Jan 29 2016
%t A188062 b[n_, m_] := n!/m!*Sum[ Sum[ 3^j*Binomial[j, n - 3*k - 3*m + 2*j]*Binomial[k + m, j], {j, 0, n}]*Binomial[m, k]*2^(m - k), {k, 0, n - m}]; Table[b[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* _Jean-François Alcover_, Feb 21 2013, translated from Maxima *)
%t A188062 BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
%t A188062 rows = 12;
%t A188062 B = BellMatrix[Function[n, If[n<6, {6, 30, 120, 360, 720, 720}[[n+1]], 0]], rows];
%t A188062 Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2018, after _Peter Luschny_ *)
%o A188062 (Maxima)
%o A188062 B(n,m):=n!/m!*sum(sum(3^j*binomial(j,n-3*k-3*m+2*j)*binomial(k+m,j),j,0,n)*binomial(m,k)*2^(m-k),k,0,n-m);
%K A188062 nonn,tabl
%O A188062 1,1
%A A188062 _Vladimir Kruchinin_, Mar 23 2011