A188107 Triangle T(n,k) with the coefficient [x^k] of 1/(1 - x - 2*x^2 + x^3)^(n-k+1) in row n, column k.
1, 1, 1, 1, 2, 3, 1, 3, 7, 4, 1, 4, 12, 14, 9, 1, 5, 18, 31, 35, 14, 1, 6, 25, 56, 87, 70, 28, 1, 7, 33, 90, 175, 207, 154, 47, 1, 8, 42, 134, 310, 476, 504, 306, 89, 1, 9, 52, 189, 504, 941, 1274, 1137, 633, 155, 1, 10, 63, 256, 770, 1680, 2745, 3188, 2571
Offset: 0
Examples
The triangle starts in row n=0 as 1; 1, 1; 1, 2, 3; 1, 3, 7, 4; 1, 4, 12, 14, 9; 1, 5, 18, 31, 35, 14; 1, 6, 25, 56, 87, 70, 28; 1, 7, 33, 90, 175, 207, 154, 47; 1, 8, 42, 134, 310, 476, 504, 306, 89;
Links
- Nathaniel Johnston, Rows n = 0..100, flattened
Programs
-
Maple
A188107 := proc(n,k) 1/(1-x-2*x^2+x^3)^(n-k+1) ; coeftayl(%,x=0,k) ; end proc: seq(seq(A188107(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Mar 22 2011
Formula
Sum_{k=0..n} T(n,k) = A001654(n+1).
T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k-2) - T(n-3,k-3). - Philippe Deléham, Feb 24 2012
Comments