cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188107 Triangle T(n,k) with the coefficient [x^k] of 1/(1 - x - 2*x^2 + x^3)^(n-k+1) in row n, column k.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 4, 1, 4, 12, 14, 9, 1, 5, 18, 31, 35, 14, 1, 6, 25, 56, 87, 70, 28, 1, 7, 33, 90, 175, 207, 154, 47, 1, 8, 42, 134, 310, 476, 504, 306, 89, 1, 9, 52, 189, 504, 941, 1274, 1137, 633, 155, 1, 10, 63, 256, 770, 1680, 2745, 3188, 2571
Offset: 0

Views

Author

L. Edson Jeffery, Mar 20 2011

Keywords

Comments

Modified versions of the generating function for the diagonal, A006053, are related to rhombus substitution tilings (see A187065, A187066 and A187067).

Examples

			The triangle starts in row n=0 as
  1;
  1,   1;
  1,   2,   3;
  1,   3,   7,   4;
  1,   4,  12,  14,   9;
  1,   5,  18,  31,  35,  14;
  1,   6,  25,  56,  87,  70,  28;
  1,   7,  33,  90, 175, 207, 154,  47;
  1,   8,  42, 134, 310, 476, 504, 306,  89;
		

Crossrefs

Programs

  • Maple
    A188107 := proc(n,k) 1/(1-x-2*x^2+x^3)^(n-k+1) ; coeftayl(%,x=0,k) ; end proc:
    seq(seq(A188107(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Mar 22 2011

Formula

Sum_{k=0..n} T(n,k) = A001654(n+1).
T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k-2) - T(n-3,k-3). - Philippe Deléham, Feb 24 2012