A188126 Number of strictly increasing arrangements of 7 nonzero numbers in -(n+5)..(n+5) with sum zero.
42, 152, 426, 1032, 2216, 4376, 8044, 13994, 23210, 37030, 57086, 85506, 124816, 178186, 249308, 342708, 463550, 618042, 813186, 1057238, 1359422, 1730468, 2182232, 2728362, 3383832, 4165678, 5092482, 6185216, 7466594, 8962070
Offset: 1
Keywords
Examples
Some solutions for n=6 -10..-10...-6...-7...-6..-11...-8..-10...-8..-11..-10...-9..-11..-11...-9...-9 .-9...-4...-3...-6...-5...-9...-7...-7...-7...-4...-7...-8...-9...-8...-6...-7 .-4...-2...-2...-4...-4...-3...-4...-6...-1...-3...-3...-3...-4...-4...-5...-4 ..4....2...-1....1...-1...-1...-3...-1....1...-2...-1...-1....1....3...-4...-2 ..5....3....1....3....3....4....5....6....3....1....1....5....2....4....7....4 ..6....4....2....6....4....9....6....8....4....8....9....6...10....6....8....8 ..8....7....9....7....9...11...11...10....8...11...11...10...11...10....9...10
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Row 7 of A188122.
Formula
Empirical: a(n)=2*a(n-1)-a(n-3)-a(n-5)+a(n-6)-2*a(n-7)+2*a(n-8)+a(n-9)-a(n-13)-2*a(n-14)+2*a(n-15)-a(n-16)+a(n-17)+a(n-19)-2*a(n-21)+a(n-22) =
208637*n/12960 +413*(-1)^n/1152 +6403*n^3/1296 +355951*n^2/28800 +11*(-1)^n*n^2/384 +13*(-1)^n*n/96 +28669*n^4/25920 +709*n^5/5400 +841*n^6/129600 +6124649/777600 + (157*A049347(n)+74*A049347(n-1))/486 + 5*A128214(n+3)/81 +2*b(n)/25 + A057079(n+2)/18 -(-1)^(floor((n+1)/2))*A000034(n+1)/8 where b(n) is the 5-periodic sequence (-3,-1,-1,2,3,...) with offset 0.
Empirical: G.f. -2*x *(21 +34*x +61*x^2 +111*x^3 +152*x^4 +206*x^5 +217*x^6 +240*x^7 +212*x^8 +172*x^9 +120*x^10 +77*x^11 +36*x^12 +9*x^13 +11*x^14 -x^15 +4*x^16 +4*x^18 -8*x^20 +4*x^21) / ( (x^2-x+1) *(x^4+x^3+x^2+x+1) *(x^2+1) *(1+x+x^2)^2 *(1+x)^3 *(x-1)^7 ). - R. J. Mathar, Mar 21 2011