A188127 Number of strictly increasing arrangements of 8 nonzero numbers in -(n+6)..(n+6) with sum zero.
137, 484, 1398, 3528, 7970, 16547, 32035, 58595, 102113, 170844, 275878, 432018, 658432, 979785, 1427065, 2039067, 2863403, 3958322, 5393994, 7254686, 9640296, 12669003, 16479033, 21231771, 27113883, 34340884, 43159574, 53852210, 66739242
Offset: 1
Keywords
Examples
Some solutions for n=6 -12..-11..-12...-8..-10..-12...-9..-10...-6..-12...-8..-10..-12..-10..-12..-11 .-9..-10...-7...-7...-7..-11...-8...-8...-5...-9...-7...-6...-4...-8...-9...-7 .-8...-2...-6...-4...-4...-3...-7...-7...-2...-3...-3...-3...-3...-5...-7...-5 .-2....1...-2...-3...-3...-2...-6...-5...-1...-2...-1...-1....1...-3....2...-4 ..5....2...-1....3...-2....1....1....4....1....1....1....1....2....1....4...-2 ..7....3....5....4....5....4....6....7....2....4....3....2....3....5....5....8 ..9....5...11....7...10...11...11....8....5...10....4....5....6....8....7....9 .10...12...12....8...11...12...12...11....6...11...11...12....7...12...10...12
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n)=2*a(n-1)-a(n-3)-a(n-5)+a(n-6)-a(n-7)+a(n-9)+a(n-10)+a(n-12)-2*a(n-13)-2*a(n-16)+a(n-17)+a(n-19)+a(n-20)-a(n-22)+a(n-23)-a(n-24)-a(n-26)+2*a(n-28)-a(n-29).
Empirical: G.f. -x*(-137 -210*x -3284*x^12 -869*x^3 -1398*x^4 -2142*x^5 -2816*x^6 -3546*x^7 -4084*x^8 -4269*x^10 -3951*x^11 -2644*x^13 -1892*x^14 -1202*x^15 -768*x^16 -389*x^17 -202*x^18 -87*x^19 -5*x^20 +20*x^21 -26*x^22 +32*x^23 +5*x^24 +29*x^25 -9*x^26 -57*x^27 +31*x^28 -4356*x^9 -430*x^2) / ( (x^2-x+1) *(x^5-1) *(x^7-1) *(x^2+1) *(1+x+x^2)^2 *(1+x)^3 *(x-1)^6 ). - R. J. Mathar, Mar 21 2011
Comments