cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188141 Decimal expansion of integral ((arctan(1/x))^3,x=0..infinity).

This page as a plain text file.
%I A188141 #22 May 19 2014 15:22:39
%S A188141 1,9,7,5,4,1,6,9,7,7,0,9,8,9,0,2,4,0,9,4,6,1,2,9,6,6,9,1,4,9,8,0,1,5,
%T A188141 8,2,7,7,1,6,7,4,5,2,6,8,7,4,7,1,2,5,5,7,1,7,8,8,3,8,6,0,5,3,6,1,5,5,
%U A188141 1,2,6,3,9,0,0,3,0,0,4,6,8,3,2,9,0,0,1,5,9,1,1,1,8,9,3,8,9,9,8,3,6,6,9,3,2,1,2,2,0,9
%N A188141 Decimal expansion of integral ((arctan(1/x))^3,x=0..infinity).
%C A188141 The computation of this integral was mentioned as a challenge by _Robert Israel_ on the newsgroup sci.math (Dec 22 2010), a closed form solution being given by Valeri Astanoff.
%H A188141 The Math Forum at Drexel - Valeri Astanoff <a href="http://mathforum.org/kb/message.jspa?messageID=7340370">Re: Nice Integral</a>, Dec 22, 2010.
%e A188141 1.9754169..
%t A188141 RealDigits[N[(3/8)*(Pi^2*Log[4] - 7*Zeta[3]) , 110]][[1]]
%t A188141 (* or as a numerical check : *)
%t A188141 RealDigits[NIntegrate[ArcTan[1/x]^3, {x, 0, Infinity}, WorkingPrecision -> 110]][[1]] (* _Jean-François Alcover_, Mar 23 2011 *)
%t A188141 RealDigits[ N[ Integrate[ ArcTan[1/x]^3, {x, 0, Infinity}], 110]][[1]] (* _Jean-François Alcover_, Oct 19 2012, since version 6.0 *)
%Y A188141 Cf. A086054 (int(arctan(1/x)^2, x=0..infinity)).
%K A188141 nonn,cons
%O A188141 1,2
%A A188141 _Jean-François Alcover_, Mar 23 2011