A188147 T(n,k)=Number of n-step self-avoiding walks on a kXk square summed over all starting positions.
1, 4, 0, 9, 8, 0, 16, 24, 8, 0, 25, 48, 44, 8, 0, 36, 80, 104, 80, 0, 0, 49, 120, 188, 232, 104, 0, 0, 64, 168, 296, 456, 432, 128, 0, 0, 81, 224, 428, 752, 972, 800, 112, 0, 0, 100, 288, 584, 1120, 1712, 2112, 1248, 112, 0, 0, 121, 360, 764, 1560, 2652, 4008, 4152, 1976, 40
Offset: 1
Examples
Some n=3 solutions for 3X3 ..1..0..0....0..0..0....0..0..3....0..0..0....0..0..0....0..0..0....0..0..0 ..2..0..0....0..3..0....0..0..2....0..3..2....0..1..0....0..0..3....0..0..0 ..3..0..0....1..2..0....0..0..1....0..0..1....3..2..0....0..1..2....1..2..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..264
Crossrefs
Row 2 is A033996(n-1)
Formula
Empirical: T(1,k) = k^2
Empirical: T(2,k) = 4*k^2 - 4*k
Empirical: T(3,k) = 12*k^2 - 24*k + 8 for k>1
Empirical: T(4,k) = 36*k^2 - 100*k + 56 for k>2
Empirical: T(5,k) = 100*k^2 - 360*k + 272 for k>3
Empirical: T(6,k) = 284*k^2 - 1228*k + 1152 for k>4
Empirical: T(7,k) = 780*k^2 - 3960*k + 4432 for k>5
Empirical: T(8,k) = 2172*k^2 - 12500*k + 16096 for k>6
Empirical: T(9,k) = 5916*k^2 - 38192*k + 55600 for k>7
Empirical: T(10,k) = 16268*k^2 - 115548*k + 186528 for k>8
Comments