cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188147 T(n,k)=Number of n-step self-avoiding walks on a kXk square summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 8, 0, 16, 24, 8, 0, 25, 48, 44, 8, 0, 36, 80, 104, 80, 0, 0, 49, 120, 188, 232, 104, 0, 0, 64, 168, 296, 456, 432, 128, 0, 0, 81, 224, 428, 752, 972, 800, 112, 0, 0, 100, 288, 584, 1120, 1712, 2112, 1248, 112, 0, 0, 121, 360, 764, 1560, 2652, 4008, 4152, 1976, 40
Offset: 1

Views

Author

R. H. Hardin Mar 22 2011

Keywords

Comments

Table starts
.1.4...9...16....25....36.....49.....64.....81....100....121.....144.....169
.0.8..24...48....80...120....168....224....288....360....440.....528.....624
.0.8..44..104...188...296....428....584....764....968...1196....1448....1724
.0.8..80..232...456...752...1120...1560...2072...2656...3312....4040....4840
.0.0.104..432...972..1712...2652...3792...5132...6672...8412...10352...12492
.0.0.128..800..2112..4008...6472...9504..13104..17272..22008...27312...33184
.0.0.112.1248..4152..8752..14932..22672..31972..42832..55252...69232...84772
.0.0.112.1976..8160.19312..35024..55104..79528.108296.141408..178864..220664
.0.0..40.2640.14520.39792..78168.128688.191068.265280.351324..449200..558908
.0.0...0.3696.26000.82032.175312.303328.464304.657848.883928.1142544.1433696

Examples

			Some n=3 solutions for 3X3
..1..0..0....0..0..0....0..0..3....0..0..0....0..0..0....0..0..0....0..0..0
..2..0..0....0..3..0....0..0..2....0..3..2....0..1..0....0..0..3....0..0..0
..3..0..0....1..2..0....0..0..1....0..0..1....3..2..0....0..1..2....1..2..3
		

Crossrefs

Row 2 is A033996(n-1)

Formula

Empirical: T(1,k) = k^2
Empirical: T(2,k) = 4*k^2 - 4*k
Empirical: T(3,k) = 12*k^2 - 24*k + 8 for k>1
Empirical: T(4,k) = 36*k^2 - 100*k + 56 for k>2
Empirical: T(5,k) = 100*k^2 - 360*k + 272 for k>3
Empirical: T(6,k) = 284*k^2 - 1228*k + 1152 for k>4
Empirical: T(7,k) = 780*k^2 - 3960*k + 4432 for k>5
Empirical: T(8,k) = 2172*k^2 - 12500*k + 16096 for k>6
Empirical: T(9,k) = 5916*k^2 - 38192*k + 55600 for k>7
Empirical: T(10,k) = 16268*k^2 - 115548*k + 186528 for k>8