cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188150 Number of 5-step self-avoiding walks on an n X n square summed over all starting positions.

This page as a plain text file.
%I A188150 #14 Apr 27 2018 09:22:26
%S A188150 0,0,104,432,972,1712,2652,3792,5132,6672,8412,10352,12492,14832,
%T A188150 17372,20112,23052,26192,29532,33072,36812,40752,44892,49232,53772,
%U A188150 58512,63452,68592,73932,79472,85212,91152,97292,103632,110172,116912,123852,130992
%N A188150 Number of 5-step self-avoiding walks on an n X n square summed over all starting positions.
%C A188150 Row 5 of A188147.
%H A188150 R. H. Hardin, <a href="/A188150/b188150.txt">Table of n, a(n) for n = 1..50</a>
%F A188150 Empirical: a(n) = 100*n^2 - 360*n + 272 for n>3.
%F A188150 Conjectures from _Colin Barker_, Apr 27 2018: (Start)
%F A188150 G.f.: 4*x^3*(26 + 30*x - 3*x^2 - 3*x^3) / (1 - x)^3.
%F A188150 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6.
%F A188150 (End)
%e A188150 Some solutions for 3 X 3:
%e A188150   5 4 3   1 0 5   5 0 1   2 1 0   0 1 0   1 0 0   5 0 0
%e A188150   0 1 2   2 3 4   4 3 2   3 4 5   0 2 3   2 0 0   4 3 0
%e A188150   0 0 0   0 0 0   0 0 0   0 0 0   0 5 4   3 4 5   1 2 0
%Y A188150 Cf. A188147.
%K A188150 nonn
%O A188150 1,3
%A A188150 _R. H. Hardin_, Mar 22 2011