cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188151 Number of 6-step self-avoiding walks on an n X n square summed over all starting positions.

This page as a plain text file.
%I A188151 #14 Apr 27 2018 09:22:33
%S A188151 0,0,128,800,2112,4008,6472,9504,13104,17272,22008,27312,33184,39624,
%T A188151 46632,54208,62352,71064,80344,90192,100608,111592,123144,135264,
%U A188151 147952,161208,175032,189424,204384,219912,236008,252672,269904,287704,306072
%N A188151 Number of 6-step self-avoiding walks on an n X n square summed over all starting positions.
%C A188151 Row 6 of A188147.
%H A188151 R. H. Hardin, <a href="/A188151/b188151.txt">Table of n, a(n) for n = 1..50</a>
%F A188151 Empirical: a(n) = 284*n^2 - 1228*n + 1152 for n>4.
%F A188151 Conjectures from _Colin Barker_, Apr 27 2018: (Start)
%F A188151 G.f.: 8*x^3*(16 + 52*x + 12*x^2 - 7*x^3 - 2*x^4) / (1 - x)^3.
%F A188151 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>7.
%F A188151 (End)
%e A188151 Some solutions for 3 X 3:
%e A188151   5 4 3   0 6 7   2 3 4   6 7 0   0 7 0   7 4 3   1 0 0
%e A188151   6 0 2   4 5 0   1 0 5   5 2 1   1 6 5   6 5 2   2 7 6
%e A188151   7 0 1   3 2 1   0 7 6   4 3 0   2 3 4   0 0 1   3 4 5
%Y A188151 Cf. A188147.
%K A188151 nonn
%O A188151 1,3
%A A188151 _R. H. Hardin_, Mar 22 2011